
Fuzzy Logic Toolbox™

User’s Guide

R2013a



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fuzzy Logic Toolbox™ User’s Guide

© COPYRIGHT 1995–2013 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
January 1995 First printing
April 1997 Second printing
January 1998 Third printing
September 2000 Fourth printing Revised for Version 2 (Release 12)
April 2003 Fifth printing
June 2004 Online only Updated for Version 2.1.3 (Release 14)
March 2005 Online only Updated for Version 2.2.1 (Release 14SP2)
September 2005 Online only Updated for Version 2.2.2 (Release 14SP3)
March 2006 Online only Updated for Version 2.2.3 (Release 2006a)
September 2006 Online only Updated for Version 2.2.4 (Release 2006b)
March 2007 Online only Updated for Version 2.2.5 (Release 2007a)
September 2007 Online only Revised for Version 2.2.6 (Release 2007b)
March 2008 Online only Revised for Version 2.2.7 (Release 2008a)
October 2008 Online only Revised for Version 2.2.8 (Release 2008b)
March 2009 Online only Revised for Version 2.2.9 (Release 2009a)
September 2009 Online only Revised for Version 2.2.10 (Release 2009b)
March 2010 Online only Revised for Version 2.2.11 (Release 2010a)
September 2010 Online only Revised for Version 2.2.12 (Release 2010b)
April 2011 Online only Revised for Version 2.2.13 (Release 2011a)
September 2011 Online only Revised for Version 2.2.14 (Release 2011b)
March 2012 Online only Revised for Version 2.2.15 (Release 2012a)
September 2012 Online only Revised for Version 2.2.16 (Release 2012b)
March 2013 Online only Revised for Version 2.2.17 (Release 2013a)





Contents

Getting Started

1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Using This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

What Is Fuzzy Logic? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Description of Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Why Use Fuzzy Logic? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
When Not to Use Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . 1-9
What Can Fuzzy Logic Toolbox Software Do? . . . . . . . . . . . 1-10

Fuzzy vs. Nonfuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
The Basic Tipping Problem . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
The Nonfuzzy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
The Fuzzy Logic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17

Tutorial

2
Foundations of Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Membership Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
If-Then Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

v



Types of Fuzzy Inference Systems . . . . . . . . . . . . . . . . . . . 2-21

Fuzzy Inference Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Step 1. Fuzzify Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Step 2. Apply Fuzzy Operator . . . . . . . . . . . . . . . . . . . . . . . 2-25
Step 3. Apply Implication Method . . . . . . . . . . . . . . . . . . . . 2-26
Step 4. Aggregate All Outputs . . . . . . . . . . . . . . . . . . . . . . . 2-27
Step 5. Defuzzify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Fuzzy Inference Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29

Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33

What Is Mamdani-Type Fuzzy Inference? . . . . . . . . . . . . 2-34

Build Mamdani Systems (GUI) . . . . . . . . . . . . . . . . . . . . . . 2-35
How to Build Mamdani Systems Using Fuzzy Logic Toolbox
Graphical User Interface Tools . . . . . . . . . . . . . . . . . . . . 2-35

The Basic Tipping Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
The FIS Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
The Membership Function Editor . . . . . . . . . . . . . . . . . . . . 2-43
The Rule Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
The Rule Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
The Surface Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
Importing and Exporting from the GUI Tools . . . . . . . . . . . 2-61

Build Mamdani Systems Using Custom Functions . . . . 2-62
How to Build Fuzzy Inference Systems Using Custom
Functions in the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62

Specifying Custom Membership Functions . . . . . . . . . . . . . 2-64
Specifying Custom Inference Functions . . . . . . . . . . . . . . . 2-70

Build Mamdani Systems (Code) . . . . . . . . . . . . . . . . . . . . . 2-76
Tipping Problem from the Command Line . . . . . . . . . . . . . 2-76
System Display Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
Building a System from Scratch . . . . . . . . . . . . . . . . . . . . . . 2-82
FIS Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
The FIS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86

Simulate Fuzzy Inference Systems in Simulink . . . . . . . 2-90

vi Contents



Build Your Own Fuzzy Simulink Models . . . . . . . . . . . . . 2-97
About the Fuzzy Logic Controller Block . . . . . . . . . . . . . . . 2-98
About the Fuzzy Logic Controller with Ruleviewer
Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98

Initializing Fuzzy Logic Controller Blocks . . . . . . . . . . . . . 2-99
Example: Cart and Pole Simulation . . . . . . . . . . . . . . . . . . 2-100

What Is Sugeno-Type Fuzzy Inference? . . . . . . . . . . . . . . 2-103

Comparison of Sugeno and Mamdani Systems . . . . . . . . 2-109
Advantages of the Sugeno Method . . . . . . . . . . . . . . . . . . . . 2-109
Advantages of the Mamdani Method . . . . . . . . . . . . . . . . . . 2-109

anfis and the ANFIS Editor GUI . . . . . . . . . . . . . . . . . . . . . 2-110
When to Use Neuro-Adaptive Learning . . . . . . . . . . . . . . . . 2-110
Model Learning and Inference Through ANFIS . . . . . . . . . 2-111
Train Adaptive Neuro-Fuzzy Inference Systems (GUI) . . . 2-114
Test Data Against Trained System (GUI) . . . . . . . . . . . . . . 2-118
Predict Chaotic Time-Series (Code) . . . . . . . . . . . . . . . . . . . 2-132
Save Training Error Data to MATLAB Workspace . . . . . . 2-138
Comparison of anfis and ANFIS Editor Functionality . . . 2-145

Fuzzy Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-152
What Is Data Clustering? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-152
Fuzzy C-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 2-153
Cluster Quasi-Random Data Using Fuzzy C-Means
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-154

Subtractive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-158
Model Suburban Commuting Using Subtractive
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-159

Data Clustering Using the Clustering Tool . . . . . . . . . . . . . 2-170

Simulating Fuzzy Inference Systems Using the Fuzzy
Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-174
About the Fuzzy Inference Engine . . . . . . . . . . . . . . . . . . . . 2-174
Simulate Systems on Windows Platforms . . . . . . . . . . . . . . 2-175
Simulate Systems on UNIX Platforms . . . . . . . . . . . . . . . . 2-179

vii



Functions — Alphabetical List

3

Blocks — Alphabetical List

4

Bibliography

A

Glossary

Index

viii Contents



1

Getting Started

• “Product Description” on page 1-2

• “Installation” on page 1-3

• “Using This Guide” on page 1-4

• “What Is Fuzzy Logic?” on page 1-5

• “Fuzzy vs. Nonfuzzy Logic” on page 1-12



1 Getting Started

Product Description
Design and simulate fuzzy logic systems

Fuzzy Logic Toolbox™ provides MATLAB® functions, graphical tools, and
a Simulink® block for analyzing, designing, and simulating systems based
on fuzzy logic. The product guides you through the steps of designing fuzzy
inference systems. Functions are provided for many common methods,
including fuzzy clustering and adaptive neurofuzzy learning.

The toolbox lets you model complex system behaviors using simple logic
rules, and then implement these rules in a fuzzy inference system. You can
use it as a stand-alone fuzzy inference engine. Alternatively, you can use
fuzzy inference blocks in Simulink and simulate the fuzzy systems within a
comprehensive model of the entire dynamic system.

Key Features

• Specialized GUIs for building fuzzy inference systems and viewing and
analyzing results

• Membership functions for creating fuzzy inference systems

• Support for AND, OR, and NOT logic in user-defined rules

• Standard Mamdani and Sugeno-type fuzzy inference systems

• Automated membership function shaping through neuroadaptive and fuzzy
clustering learning techniques

• Ability to embed a fuzzy inference system in a Simulink model

• Ability to generate embeddable C code or stand-alone executable fuzzy
inference engines

1-2



Installation

Installation
To install this toolbox on a workstation, large machine, or a PC, see the
installation documentation for that platform.

To determine if Fuzzy Logic Toolbox software is already installed on your
system, check for a subfolder named fuzzy within the main toolbox folder.

1-3



1 Getting Started

Using This Guide
If you are new to fuzzy logic, begin with “What Is Fuzzy Logic?” on page
1-5. This introduces the motivation behind fuzzy logic and leads you smoothly
into the tutorial.

If you are an experienced fuzzy logic user, you may want to start at
“Foundations of Fuzzy Logic” on page 2-2 to make sure you are comfortable
with the Fuzzy Logic Toolbox terminology. If you just want an overview of
each graphical tool and examples of specific fuzzy system tasks, turn directly
to “Build Mamdani Systems (GUI)” on page 2-35. This section does not
include information on the adaptive data modeling application covered by the
toolbox function ANFIS. The basic functionality of this tool can be found in
“Train Adaptive Neuro-Fuzzy Inference Systems (GUI)” on page 2-114.

If you just want to start as soon as possible and experiment, you can open an
example system right away by typing

fuzzy tipper

This displays the Fuzzy Inference System (FIS) editor for an example
decision-making problem that has to do with how to tip in a restaurant.

For more information on specific tools or functions, see the reference pages.
Reference descriptions include a synopsis of the function’s syntax, as well as a
complete explanation of options and operation. Many reference descriptions
also include helpful examples, a description of the function’s algorithm,
and references to additional reading material. For GUI-based tools, the
descriptions include options for invoking the tool.

1-4



What Is Fuzzy Logic?

What Is Fuzzy Logic?

In this section...

“Description of Fuzzy Logic” on page 1-5

“Why Use Fuzzy Logic?” on page 1-8

“When Not to Use Fuzzy Logic” on page 1-9

“What Can Fuzzy Logic Toolbox Software Do?” on page 1-10

Description of Fuzzy Logic
In recent years, the number and variety of applications of fuzzy logic have
increased significantly. The applications range from consumer products
such as cameras, camcorders, washing machines, and microwave ovens
to industrial process control, medical instrumentation, decision-support
systems, and portfolio selection.

To understand why use of fuzzy logic has grown, you must first understand
what is meant by fuzzy logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a
logical system, which is an extension of multivalued logic. However, in a wider
sense fuzzy logic (FL) is almost synonymous with the theory of fuzzy sets, a
theory which relates to classes of objects with unsharp boundaries in which
membership is a matter of degree. In this perspective, fuzzy logic in its narrow
sense is a branch of FL. Even in its more narrow definition, fuzzy logic differs
both in concept and substance from traditional multivalued logical systems.

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that
is, fuzzy logic in its wide sense. The basic ideas underlying FL are explained
very clearly and insightfully in “Foundations of Fuzzy Logic” on page 2-2.
What might be added is that the basic concept underlying FL is that of a
linguistic variable, that is, a variable whose values are words rather than
numbers. In effect, much of FL may be viewed as a methodology for computing
with words rather than numbers. Although words are inherently less
precise than numbers, their use is closer to human intuition. Furthermore,
computing with words exploits the tolerance for imprecision and thereby
lowers the cost of solution.

1-5



1 Getting Started

Another basic concept in FL, which plays a central role in most of its
applications, is that of a fuzzy if-then rule or, simply, fuzzy rule. Although
rule-based systems have a long history of use in Artificial Intelligence (AI),
what is missing in such systems is a mechanism for dealing with fuzzy
consequents and fuzzy antecedents. In fuzzy logic, this mechanism is provided
by the calculus of fuzzy rules. The calculus of fuzzy rules serves as a basis
for what might be called the Fuzzy Dependency and Command Language
(FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively
one of its principal constituents. In most of the applications of fuzzy logic, a
fuzzy logic solution is, in reality, a translation of a human solution into FDCL.

A trend that is growing in visibility relates to the use of fuzzy logic in
combination with neurocomputing and genetic algorithms. More generally,
fuzzy logic, neurocomputing, and genetic algorithms may be viewed as the
principal constituents of what might be called soft computing. Unlike the
traditional, hard computing, soft computing accommodates the imprecision
of the real world. The guiding principle of soft computing is: Exploit
the tolerance for imprecision, uncertainty, and partial truth to achieve
tractability, robustness, and low solution cost. In the future, soft computing
could play an increasingly important role in the conception and design of
systems whose MIQ (Machine IQ) is much higher than that of systems
designed by conventional methods.

Among various combinations of methodologies in soft computing, the
one that has highest visibility at this juncture is that of fuzzy logic and
neurocomputing, leading to neuro-fuzzy systems. Within fuzzy logic, such
systems play a particularly important role in the induction of rules from
observations. An effective method developed by Dr. Roger Jang for this
purpose is called ANFIS (Adaptive Neuro-Fuzzy Inference System). This
method is an important component of the toolbox.

Fuzzy logic is all about the relative importance of precision: How important is
it to be exactly right when a rough answer will do?

You can use Fuzzy Logic Toolbox software with MATLAB technical computing
software as a tool for solving problems with fuzzy logic. Fuzzy logic is a
fascinating area of research because it does a good job of trading off between
significance and precision—something that humans have been managing
for a very long time.

1-6



What Is Fuzzy Logic?

In this sense, fuzzy logic is both old and new because, although the modern
and methodical science of fuzzy logic is still young, the concepts of fuzzy logic
relies on age-old skills of human reasoning.

����������	
��
���
��
�����
�������
��
�
�����	��

����
�����

�	
����� �����������


�	
���������������������
������
��
�����	��

Fuzzy logic is a convenient way to map an input space to an output space.
Mapping input to output is the starting point for everything. Consider the
following examples:

• With information about how good your service was at a restaurant, a fuzzy
logic system can tell you what the tip should be.

• With your specification of how hot you want the water, a fuzzy logic system
can adjust the faucet valve to the right setting.

• With information about how far away the subject of your photograph is,
a fuzzy logic system can focus the lens for you.

• With information about how fast the car is going and how hard the motor is
working, a fuzzy logic system can shift gears for you.

A graphical example of an input-output map is shown in the following figure.

1-7



1 Getting Started

����������

�
������������������

 �
������
�����!

�����������

�
��������������!

�������"���������
 �
����

�������#������	
�$������������������	%
&'��������� �
������$��������(���)�	�����������*���+,

�����
�� ��������������

$����������

To determine the appropriate amount of tip requires mapping inputs to the
appropriate outputs. Between the input and the output, the preceding figure
shows a black box that can contain any number of things: fuzzy systems,
linear systems, expert systems, neural networks, differential equations,
interpolated multidimensional lookup tables, or even a spiritual advisor, just
to name a few of the possible options. Clearly the list could go on and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy
is often the very best way. Why should that be? As Lotfi Zadeh, who is
considered to be the father of fuzzy logic, once remarked: “In almost every
case you can build the same product without fuzzy logic, but fuzzy is faster
and cheaper.”

Why Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic:

• Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy
logic is a more intuitive approach without the far-reaching complexity.

• Fuzzy logic is flexible.

With any given system, it is easy to layer on more functionality without
starting again from scratch.

• Fuzzy logic is tolerant of imprecise data.

1-8



What Is Fuzzy Logic?

Everything is imprecise if you look closely enough, but more than that, most
things are imprecise even on careful inspection. Fuzzy reasoning builds
this understanding into the process rather than tacking it onto the end.

• Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This
process is made particularly easy by adaptive techniques like Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), which are available in Fuzzy
Logic Toolbox software.

• Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and
generate opaque, impenetrable models, fuzzy logic lets you rely on the
experience of people who already understand your system.

• Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don’t necessarily replace conventional control methods.
In many cases fuzzy systems augment them and simplify their
implementation.

• Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This
observation underpins many of the other statements about fuzzy logic.
Because fuzzy logic is built on the structures of qualitative description used
in everyday language, fuzzy logic is easy to use.

The last statement is perhaps the most important one and deserves more
discussion. Natural language, which is used by ordinary people on a daily
basis, has been shaped by thousands of years of human history to be
convenient and efficient. Sentences written in ordinary language represent a
triumph of efficient communication.

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest
statement is the first one made in this introduction: fuzzy logic is a convenient
way to map an input space to an output space. If you find it’s not convenient,
try something else. If a simpler solution already exists, use it. Fuzzy logic is
the codification of common sense — use common sense when you implement it
and you will probably make the right decision. Many controllers, for example,

1-9



1 Getting Started

do a fine job without using fuzzy logic. However, if you take the time to
become familiar with fuzzy logic, you’ll see it can be a very powerful tool for
dealing quickly and efficiently with imprecision and nonlinearity.

What Can Fuzzy Logic Toolbox Software Do?
You can create and edit fuzzy inference systems with Fuzzy Logic Toolbox
software. You can create these systems using graphical tools or command-line
functions, or you can generate them automatically using either clustering
or adaptive neuro-fuzzy techniques.

If you have access to Simulink software, you can easily test your fuzzy system
in a block diagram simulation environment.

The toolbox also lets you run your own stand-alone C programs directly.
This is made possible by a stand-alone Fuzzy Inference Engine that reads
the fuzzy systems saved from a MATLAB session. You can customize the
stand-alone engine to build fuzzy inference into your own code. All provided
code is ANSI® compliant.

�����
���	
	��	
���	�

�����������	
�����������	

������

�����
�����
�������

 	
�!
���	�
�����	

"�#	
��������	

�������$

Because of the integrated nature of the MATLAB environment, you can
create your own tools to customize the toolbox or harness it with another

1-10



What Is Fuzzy Logic?

toolbox, such as the Control System Toolbox™, Neural Network Toolbox™,
or Optimization Toolbox™ software.

1-11



1 Getting Started

Fuzzy vs. Nonfuzzy Logic

In this section...

“The Basic Tipping Problem” on page 1-12

“The Nonfuzzy Approach” on page 1-12

“The Fuzzy Logic Approach” on page 1-16

“Problem Solution” on page 1-17

The Basic Tipping Problem
To illustrate the value of fuzzy logic, examine both linear and fuzzy
approaches to the following problem:

What is the right amount to tip your waitperson?

First, work through this problem the conventional (nonfuzzy) way, writing
MATLAB commands that spell out linear and piecewise-linear relations.
Then, look at the same system using fuzzy logic.

The Basic Tipping Problem. Given a number between 0 and 10 that
represents the quality of service at a restaurant (where 10 is excellent), what
should the tip be?

Note This problem is based on tipping as it is typically practiced in the
United States. An average tip for a meal in the U.S. is 15%, though the actual
amount may vary depending on the quality of the service provided.

The Nonfuzzy Approach
Begin with the simplest possible relationship. Suppose that the tip always
equals 15% of the total bill.

tip = 0.15

1-12



Fuzzy vs. Nonfuzzy Logic

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

service

tip

This relationship does not take into account the quality of the service, so you
need to add a new term to the equation. Because service is rated on a scale of
0 to 10, you might have the tip go linearly from 5% if the service is bad to 25%
if the service is excellent. Now the relation looks like the following plot:

tip=0.20/10*service+0.05

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

service

tip

The formula does what you want it to do, and is straightforward. However,
you may want the tip to reflect the quality of the food as well. This extension
of the problem is defined as follows.

The Extended Tipping Problem. Given two sets of numbers between 0 and
10 (where 10 is excellent) that respectively represent the quality of the service
and the quality of the food at a restaurant, what should the tip be?

1-13



1 Getting Started

See how the formula is affected now that you have added another variable.
Try the following equation:

tip = 0.20/20*(service+food)+0.05;

0

5

10

0

5

10
0.05

0.1

0.15

0.2

0.25

servicefood

tip

In this case, the results look satisfactory, but when you look at them closely,
they do not seem quite right. Suppose you want the service to be a more
important factor than the food quality. Specify that service accounts for 80%
of the overall tipping grade and the food makes up the other 20%. Try this
equation:

servRatio=0.8;
tip=servRatio*(0.20/10*service+0.05) + ...

(1-servRatio)*(0.20/10*food+0.05);

0

5

10

0

5

10
0.05

0.1

0.15

0.2

0.25

servicefood

tip

The response is still somehow too uniformly linear. Suppose you want more of
a flat response in the middle, i.e., you want to give a 15% tip in general, but

1-14



Fuzzy vs. Nonfuzzy Logic

want to also specify a variation if the service is exceptionally good or bad. This
factor, in turn, means that the previous linear mappings no longer apply. You
can still use the linear calculation with a piecewise linear construction. Now,
return to the one-dimensional problem of just considering the service. You can
string together a simple conditional statement using breakpoints like this.

if service<3,
tip=(0.10/3)*service+0.05;

elseif service<7,
tip=0.15;

elseif service<=10,
tip=(0.10/3)*(service-7)+0.15;

end

The plot now looks like the following figure:

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

service

tip

If you extend this to two dimensions, where you take food into account again,
something like the following output results.

servRatio=0.8;
if service<3,

tip=((0.10/3)*service+0.05)*servRatio + ...
(1-servRatio)*(0.20/10*food+0.05);

elseif service<7,

1-15



1 Getting Started

tip=(0.15)*servRatio + ...
(1-servRatio)*(0.20/10*food+0.05);

else,
tip=((0.10/3)*(service-7)+0.15)*servRatio + ...

(1-servRatio)*(0.20/10*food+0.05);
end

0

5

10

0

5

10
0.05

0.1

0.15

0.2

0.25

servicefood

tip

The plot looks good, but the function is surprisingly complicated. It was a
little difficult to code this correctly, and it is definitely not easy to modify this
code in the future. Moreover, it is even less apparent how the algorithm works
to someone who did not see the original design process.

The Fuzzy Logic Approach
You need to capture the essentials of this problem, leaving aside all the
factors that could be arbitrary. If you make a list of what really matters in
this problem, you might end up with the following rule descriptions.

Tipping Problem Rules — Service Factor

If service is poor, then tip is cheap

If service is good, then tip is average

If service is excellent, then tip is generous

1-16



Fuzzy vs. Nonfuzzy Logic

The order in which the rules are presented here is arbitrary. It does not
matter which rules come first. If you want to include the food’s effect on the
tip, add the following two rules.

Tipping Problem Rules — Food Factor

If food is rancid, then tip is cheap

If food is delicious, then tip is generous

You can combine the two different lists of rules into one tight list of three
rules like so.

Tipping Problem — Both Service and Food Factors

If service is poor or the food is rancid, then tip is cheap

If service is good, then tip is average

If service is excellent or food is delicious, then tip is generous

These three rules are the core of your solution. Coincidentally, you have just
defined the rules for a fuzzy logic system. When you give mathematical
meaning to the linguistic variables (what is an average tip, for example?)
you have a complete fuzzy inference system. The methodology of fuzzy logic
must also consider:

• How are the rules all combined?

• How do I define mathematically what an average tip is?

The next few chapters provide detailed answers to these questions. The
details of the method don’t really change much from problem to problem—the
mechanics of fuzzy logic aren’t terribly complex. What matters is that you
understand that fuzzy logic is adaptable, simple, and easily applied.

Problem Solution
The following plot represents the fuzzy logic system that solves the tipping
problem.

1-17



1 Getting Started

0

5

10

0

5

10
0.05

0.1

0.15

0.2

0.25

servicefood

tip

This plot was generated by the three rules that accounted for both service and
food factors. The mechanics of how fuzzy inference works is explained in
“Overview” on page 2-2 of “Foundations of Fuzzy Logic” on page 2-2. In “Build
Mamdani Systems (GUI)” on page 2-35, the entire tipping problem is worked
through using the Fuzzy Logic Toolbox graphical tools.

Observations
Consider some observations about the example so far. You found a piecewise
linear relation that solved the problem. It worked, but it was problematic to
derive, and when you wrote it down as code, it was not very easy to interpret.
Conversely, the fuzzy logic system is based on some common sense statements.
Also, you were able to add two more rules to the bottom of the list that
influenced the shape of the overall output without needing to undo what had
already been done, making the subsequent modification was relatively easy.

Moreover, by using fuzzy logic rules, the maintenance of the structure of
the algorithm decouples along fairly clean lines. The notion of an average
tip might change from day to day, city to city, country to country, but the
underlying logic is the same: if the service is good, the tip should be average.

Recalibrating the Method
You can recalibrate the method quickly by simply shifting the fuzzy set that
defines average without rewriting the fuzzy logic rules.

1-18



Fuzzy vs. Nonfuzzy Logic

You can shift lists of piecewise linear functions, but there is a greater
likelihood that recalibration will not be so quick and simple.

In the following example, the piecewise linear tipping problem slightly
rewritten to make it more generic. It performs the same function as before,
only now the constants can be easily changed.

% Establish constants
lowTip=0.05; averTip=0.15; highTip=0.25;
tipRange=highTip-lowTip;
badService=0; okayService=3;
goodService=7; greatService=10;
serviceRange=greatService-badService;
badFood=0; greatFood=10;
foodRange=greatFood-badFood;

% If service is poor or food is rancid, tip is cheap
if service<okayService,

tip=(((averTip-lowTip)/(okayService-badService)) ...
*service+lowTip)*servRatio + ...
(1-servRatio)*(tipRange/foodRange*food+lowTip);

% If service is good, tip is average
elseif service<goodService,

tip=averTip*servRatio + (1-servRatio)* ...
(tipRange/foodRange*food+lowTip);

% If service is excellent or food is delicious, tip is generous
else,

tip=(((highTip-averTip)/ ...
(greatService-goodService))* ...
(service-goodService)+averTip)*servRatio + ...
(1-servRatio)*(tipRange/foodRange*food+lowTip);

end

As with all code, the more generality that is introduced, the less precise the
algorithm becomes. While you can improve clarity by adding more comments,
or perhaps rewriting the algorithm in slightly more self-evident ways, but the
piecewise linear methodology is not the optimal way to resolve this issue.

If you remove everything from the algorithm except for three comments, what
remain are exactly the fuzzy logic rules you previously wrote down.

1-19



1 Getting Started

% If service is poor or food is rancid, tip is cheap
% If service is good, tip is average
% If service is excellent or food is delicious, tip is generous

If, as with a fuzzy system, the comment is identical with the code, think
how much more likely your code is to have comments. Fuzzy logic lets the
language that is clearest to you, high level comments, also have meaning to
the machine, which is why it is a very successful technique for bridging the
gap between people and machines.

By making the equations as simple as possible (linear) you make things
simpler for the machine but more complicated for you. However, the
limitation is really no longer the computer—it is your mental model of what
the computer is doing. Computers have the ability to make things hopelessly
complex; fuzzy logic reclaims the middle ground and lets the machine work
with your preferences rather than the other way around.

1-20



2

Tutorial

• “Foundations of Fuzzy Logic” on page 2-2

• “Types of Fuzzy Inference Systems” on page 2-21

• “Fuzzy Inference Process” on page 2-23

• “Customization” on page 2-33

• “What Is Mamdani-Type Fuzzy Inference?” on page 2-34

• “Build Mamdani Systems (GUI)” on page 2-35

• “Build Mamdani Systems Using Custom Functions” on page 2-62

• “Build Mamdani Systems (Code)” on page 2-76

• “Simulate Fuzzy Inference Systems in Simulink” on page 2-90

• “Build Your Own Fuzzy Simulink Models” on page 2-97

• “What Is Sugeno-Type Fuzzy Inference?” on page 2-103

• “Comparison of Sugeno and Mamdani Systems” on page 2-109

• “anfis and the ANFIS Editor GUI” on page 2-110

• “Fuzzy Clustering” on page 2-152

• “Simulating Fuzzy Inference Systems Using the Fuzzy Inference Engine”
on page 2-174



2 Tutorial

Foundations of Fuzzy Logic

In this section...

“Overview” on page 2-2

“Fuzzy Sets” on page 2-3

“Membership Functions” on page 2-7

“Logical Operations” on page 2-12

“If-Then Rules” on page 2-15

“References” on page 2-18

Overview
The point of fuzzy logic is to map an input space to an output space, and the
primary mechanism for doing this is a list of if-then statements called rules.
All rules are evaluated in parallel, and the order of the rules is unimportant.
The rules themselves are useful because they refer to variables and the
adjectives that describe those variables. Before you can build a system that
interprets rules, you must define all the terms you plan on using and the
adjectives that describe them. To say that the water is hot, you need to define
the range that the water’s temperature can be expected to vary as well as
what we mean by the word hot. The following diagram provides a roadmap for
the fuzzy inference process. It shows the general description of a fuzzy system
on the left and a specific fuzzy system on the right.

�����

��	�!	�	
���"�	 #���	������$��%��	

���	

�����
�	
%
&���	
�
	�'

������
�	
%
&����'

������ 	
(��	

���	
(��	������
���	����������	��
���	
(��	����������	���������(	
��	
���	
(��	���	��	��	�����	���������	�	
��

)���
*
����*

	��	��	��+

)��	��*
�(	
��	*

�	�	
��+

	
(��	
�������������	�
�

���
���
������	�����

���

2-2



Foundations of Fuzzy Logic

To summarize the concept of fuzzy inference depicted in this figure, fuzzy
inference is a method that interprets the values in the input vector and, based
on some set of rules, assigns values to the output vector.

This topic guides you through the fuzzy logic process step by step by providing
an introduction to the theory and practice of fuzzy logic.

Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a
crisp, clearly defined boundary. It can contain elements with only a partial
degree of membership.

To understand what a fuzzy set is, first consider the definition of a classical
set. A classical set is a container that wholly includes or wholly excludes
any given element. For example, the set of days of the week unquestionably
includes Monday, Thursday, and Saturday. It just as unquestionably excludes
butter, liberty, and dorsal fins, and so on.

-���
�

.�����
�

/������
0���
1�����

2���
�
3���4�����

0
����
�

2
����$�����)���

This type of set is called a classical set because it has been around for a long
time. It was Aristotle who first formulated the Law of the Excluded Middle,
which says X must either be in set A or in set not-A. Another version of this
law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: “Of any subject (say Monday), one thing
(a day of the week) must be either asserted or denied (I assert that Monday
is a day of the week).” This law demands that opposites, the two categories
A and not-A, should between them contain the entire universe. Everything
falls into either one group or the other. There is no thing that is both a day of
the week and not a day of the week.

2-3



2 Tutorial

Now, consider the set of days comprising a weekend. The following diagram
attempts to classify the weekend days.

������
�	
�����

�������	��
�����	

������
�����
����

���
����

�
����

2
����$�����)������

������

Most would agree that Saturday and Sunday belong, but what about Friday?
It feels like a part of the weekend, but somehow it seems like it should be
technically excluded. Thus, in the preceding diagram, Friday tries its best to
“straddle on the fence.” Classical or normal sets would not tolerate this kind of
classification. Either something is in or it is out. Human experience suggests
something different, however, straddling the fence is part of life.

Of course individual perceptions and cultural background must be taken into
account when you define what constitutes the weekend. Even the dictionary is
imprecise, defining the weekend as the period from Friday night or Saturday
to Monday morning. You are entering the realm where sharp-edged, yes-no
logic stops being helpful. Fuzzy reasoning becomes valuable exactly when you
work with how people really perceive the concept weekend as opposed to a
simple-minded classification useful for accounting purposes only. More than
anything else, the following statement lays the foundations for fuzzy logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning
offers is the ability to reply to a yes-no question with a not-quite-yes-or-no
answer. Humans do this kind of thing all the time (think how rarely you get
a straight answer to a seemingly simple question), but it is a rather new
trick for computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing
the familiar yes-no (Boolean) logic. If you give true the numerical value of 1
and false the numerical value of 0, this value indicates that fuzzy logic also
permits in-between values like 0.2 and 0.7453. For instance:

2-4



Foundations of Fuzzy Logic

Q: Is Saturday a weekend day?
A: 1 (yes, or true)
Q: Is Tuesday a weekend day?
A: 0 (no, or false)
Q: Is Friday a weekend day?
A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?
A: 0.95 (yes, but not quite as much as Saturday).

The following plot on the left shows the truth values for weekend-ness if you
are forced to respond with an absolute yes or no response. On the right, is a
plot that shows the truth value for weekend-ness if you are allowed to respond
with fuzzy in-between values.

)
��

��
��

#�
��
�

,	���-���	��-

./0

0/0

2
����$�����)�������	�����
�����	�	������

)
��

��
��

#�
��
�

,	���- ����	��- �����- 1����-���	��-

./0

0/0

2
����$�����)��������)�#�
�����	�	������

����	��- �����- 1����-

Technically, the representation on the right is from the domain ofmultivalued
logic (or multivalent logic). If you ask the question “Is X a member of set
A?” the answer might be yes, no, or any one of a thousand intermediate
values in between. Thus, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or
bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of
weekend-ness shown in the following plots.

2-5



2 Tutorial

��������	
������������	���������������
��

�
��

�
��

��
��

�

�
��

�
��

��
��

�

������ ��	����� ������ �������
������

���

���

��������	
���������	�����������������
��

������ ��	����� ������ �������
������

���

���

By making the plot continuous, you are defining the degree to which any given
instant belongs in the weekend rather than an entire day. In the plot on the
left, notice that at midnight on Friday, just as the second hand sweeps past
12, the weekend-ness truth value jumps discontinuously from 0 to 1. This is
one way to define the weekend, and while it may be useful to an accountant, it
may not really connect with your own real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact
that all of Friday, and, to a small degree, parts of Thursday, partake of the
quality of weekend-ness and thus deserve partial membership in the fuzzy set
of weekend moments. The curve that defines the weekend-ness of any instant
in time is a function that maps the input space (time of the week) to the output
space (weekend-ness). Specifically it is known as a membership function. See
“Membership Functions” on page 2-7 for a more detailed discussion.

As another example of fuzzy sets, consider the question of seasons. What
season is it right now? In the northern hemisphere, summer officially begins
at the exact moment in the earth’s orbit when the North Pole is pointed most
directly toward the sun. It occurs exactly once a year, in late June. Using the
astronomical definitions for the season, you get sharp boundaries as shown
on the left in the figure that follows. But what you experience as the seasons
vary more or less continuously as shown on the right in the following figure
(in temperate northern hemisphere climates).

2-6



Foundations of Fuzzy Logic

.�	���$����
��
�

����	 ����	

����
�

��		�� $
�� )�����

�
�� ��������� ��������

���

���

������
�$

	�	���#
���

������
�$

	�	���#
���

.�	���$����
��
�

����	 ����	

����
�

��		�� $
�� )�����

�
�� ��������� ��������

���

���

Membership Functions
A membership function (MF) is a curve that defines how each point in the
input space is mapped to a membership value (or degree of membership)
between 0 and 1. The input space is sometimes referred to as the universe of
discourse, a fancy name for a simple concept.

One of the most commonly used examples of a fuzzy set is the set of tall
people. In this case, the universe of discourse is all potential heights, say from
3 feet to 9 feet, and the word tall would correspond to a curve that defines
the degree to which any person is tall. If the set of tall people is given the
well-defined (crisp) boundary of a classical set, you might say all people taller
than 6 feet are officially considered tall. However, such a distinction is clearly
absurd. It may make sense to consider the set of all real numbers greater
than 6 because numbers belong on an abstract plane, but when we want to
talk about real people, it is unreasonable to call one person short and another
one tall when they differ in height by the width of a hair.

2�������3

����
	�����
�������
���

3

�����
	
�

����

�5�������6

If the kind of distinction shown previously is unworkable, then what is the
right way to define the set of tall people? Much as with the plot of weekend
days, the figure following shows a smoothly varying curve that passes from

2-7



2 Tutorial

not-tall to tall. The output-axis is a number known as the membership value
between 0 and 1. The curve is known as a membership function and is often
given the designation of µ. This curve defines the transition from not tall to
tall. Both people are tall to some degree, but one is significantly less tall
than the other.

������

��������$
	�	������(�7

��$��������
��
��
���������8���9�!

./0

0/0

��
������������
�
���
��
������8�����!

��
�#�����
	�	������
$��������$��

.�//

������

��������$
	�	������(�7

�
������8����!./0

0/0 �����
������8����!

����������
	�	������
$��������$��

.�//

Subjective interpretations and appropriate units are built right into fuzzy
sets. If you say “She’s tall,” the membership function tall should already take
into account whether you are referring to a six-year-old or a grown woman.
Similarly, the units are included in the curve. Certainly it makes no sense to
say “Is she tall in inches or in meters?”

Membership Functions in Fuzzy Logic Toolbox Software
The only condition a membership function must really satisfy is that it must
vary between 0 and 1. The function itself can be an arbitrary curve whose
shape we can define as a function that suits us from the point of view of
simplicity, convenience, speed, and efficiency.

2-8



Foundations of Fuzzy Logic

A classical set might be expressed as

A = {x | x > 6}

A fuzzy set is an extension of a classical set. If X is the universe of discourse
and its elements are denoted by x, then a fuzzy set A in X is defined as a
set of ordered pairs.

A = {x, µA(x) | x X}

µA(x) is called the membership function (or MF) of x in A. The membership
function maps each element of X to a membership value between 0 and 1.

The toolbox includes 11 built-in membership function types. These 11
functions are, in turn, built from several basic functions:

• piece-wise linear functions

• the Gaussian distribution function

• the sigmoid curve

• quadratic and cubic polynomial curves

For detailed information on any of the membership functions mentioned
next, see the corresponding reference page. By convention, all membership
functions have the letters mf at the end of their names.

The simplest membership functions are formed using straight lines. Of these,
the simplest is the triangular membership function, and it has the function
name trimf. This function is nothing more than a collection of three points
forming a triangle. The trapezoidal membership function, trapmf, has a
flat top and really is just a truncated triangle curve. These straight line
membership functions have the advantage of simplicity.

2-9



2 Tutorial

0 2 4 6 8 10

0

0.25

0.5

0.75

1

trimf, P = [3 6 8]

trimf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

trapmf, P = [1 5 7 8]

trapmf

Two membership functions are built on the Gaussian distribution curve: a
simple Gaussian curve and a two-sided composite of two different Gaussian
curves. The two functions are gaussmf and gauss2mf.

The generalized bell membership function is specified by three parameters
and has the function name gbellmf. The bell membership function has one
more parameter than the Gaussian membership function, so it can approach
a non-fuzzy set if the free parameter is tuned. Because of their smoothness
and concise notation, Gaussian and bell membership functions are popular
methods for specifying fuzzy sets. Both of these curves have the advantage of
being smooth and nonzero at all points.

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gaussmf, P = [2 5]

gaussmf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gauss2mf, P = [1 3 3 4]

gauss2mf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gbellmf, P = [2 4 6]

gbellmf

Although the Gaussian membership functions and bell membership functions
achieve smoothness, they are unable to specify asymmetric membership
functions, which are important in certain applications. Next, you define the
sigmoidalmembership function, which is either open left or right. Asymmetric
and closed (i.e. not open to the left or right) membership functions can be
synthesized using two sigmoidal functions, so in addition to the basic sigmf,
you also have the difference between two sigmoidal functions, dsigmf, and the
product of two sigmoidal functions psigmf.

2-10



Foundations of Fuzzy Logic

0 2 4 6 8 10

0

0.25

0.5

0.75

1

dsigmf, P = [5 2 5 7]

dsigmf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

psigmf, P = [2 3 −5 8]

psigmf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

sigmf, P = [2 4]

sigmf

Polynomial based curves account for several of the membership functions in
the toolbox. Three related membership functions are the Z, S, and Pi curves,
all named because of their shape. The function zmf is the asymmetrical
polynomial curve open to the left, smf is the mirror-image function that opens
to the right, and pimf is zero on both extremes with a rise in the middle.

0 2 4 6 8 10

0

0.25

0.5

0.75

1

pimf, P = [1 4 5 10]

pimf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

smf, P = [1 8]

zmf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

zmf, P = [3 7]

smf

There is a very wide selection to choose from when you’re selecting a
membership function. You can also create your own membership functions
with the toolbox. However, if a list based on expanded membership functions
seems too complicated, just remember that you could probably get along very
well with just one or two types of membership functions, for example the
triangle and trapezoid functions. The selection is wide for those who want
to explore the possibilities, but expansive membership functions are not
necessary for good fuzzy inference systems. Finally, remember that more
details are available on all these functions in the reference section.

Summary of Membership Functions

• Fuzzy sets describe vague concepts (e.g., fast runner, hot weather, weekend
days).

2-11



2 Tutorial

• A fuzzy set admits the possibility of partial membership in it. (e.g., Friday
is sort of a weekend day, the weather is rather hot).

• The degree an object belongs to a fuzzy set is denoted by a membership
value between 0 and 1. (e.g., Friday is a weekend day to the degree 0.8).

• A membership function associated with a given fuzzy set maps an input
value to its appropriate membership value.

Logical Operations
Now that you understand the fuzzy inference, you need to see how fuzzy
inference connects with logical operations.

The most important thing to realize about fuzzy logical reasoning is the fact
that it is a superset of standard Boolean logic. In other words, if you keep the
fuzzy values at their extremes of 1 (completely true), and 0 (completely false),
standard logical operations will hold. As an example, consider the following
standard truth tables.

AND

0

0

1

1

A B A and B A B A or B A not A

0

1

0

1

0

0

0

1

OR

0

0

1

1

0

1

0

1

0

1

1

1

NOT

0

1

1

0

Now, because in fuzzy logic the truth of any statement is a matter of degree,
can these truth tables be altered? The input values can be real numbers
between 0 and 1. What function preserves the results of the AND truth table
(for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B,
where A and B are limited to the range (0,1), by using the function min(A,B).
Using the same reasoning, you can replace the OR operation with the max
function, so that A OR B becomes equivalent to max(A,B). Finally, the

operation NOT A becomes equivalent to the operation 1− A . Notice how the
previous truth table is completely unchanged by this substitution.

2-12



Foundations of Fuzzy Logic

AND

0

0

1

1

A B min(A,B) A B max(A,B) A 1 - A

0

1

0

1

0

0

0

1

OR

0

0

1

1

0

1

0

1

0

1

1

1

NOT

0

1

1

0

Moreover, because there is a function behind the truth table rather than just
the truth table itself, you can now consider values other than 1 and 0.

The next figure uses a graph to show the same information. In this figure, the
truth table is converted to a plot of two fuzzy sets applied together to create
one fuzzy set. The upper part of the figure displays plots corresponding to the
preceding two-valued truth tables, while the lower part of the figure displays
how the operations work over a continuously varying range of truth values A
and B according to the fuzzy operations you have defined.

� �

��
�	
�

�����
���	
�����

������
���	
�����

��
�	
�

�

�

�

�

�

� � �

������

������

�

�

�����

�����

!"  !�
���#�$�% ��&#�$�% #�'�%

2-13



2 Tutorial

Given these three functions, you can resolve any construction using fuzzy sets
and the fuzzy logical operation AND, OR, and NOT.

Additional Fuzzy Operators
In this case, you defined only one particular correspondence between
two-valued and multivalued logical operations for AND, OR, and NOT. This
correspondence is by no means unique.

In more general terms, you are defining what are known as the fuzzy
intersection or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy
complement (NOT). The classical operators for these functions are: AND =
min, OR = max, and NOT = additive complement. Typically, most fuzzy logic
applications make use of these operations and leave it at that. In general,
however, these functions are arbitrary to a surprising degree. Fuzzy Logic
Toolbox software uses the classical operator for the fuzzy complement as
shown in the previous figure, but also enables you to customize the AND
and OR operators.

The intersection of two fuzzy sets A and B is specified in general by a binary
mapping T, which aggregates two membership functions as follows:

µA∩B(x) = T(µA(x), µB(x))

For example, the binary operator T may represent the multiplication of

μ μA x xB( ) ( )and . These fuzzy intersection operators, which are usually
referred to as T-norm (Triangular norm) operators, meet the following basic
requirements:

A T-norm operator is a binary mapping T(.,.) satisfying
boundary: T(0, 0) = 0, T(a, 1) = T(1, a) = a
monotonicity: T(a, b) <= T(c, d) if a <= c and b <= d
commutativity: T(a, b) = T(b, a)
associativity: T(a, T(b, c)) = T(T(a, b), c)

The first requirement imposes the correct generalization to crisp sets. The
second requirement implies that a decrease in the membership values in A or
B cannot produce an increase in the membership value in A intersection B.
The third requirement indicates that the operator is indifferent to the order of

2-14



Foundations of Fuzzy Logic

the fuzzy sets to be combined. Finally, the fourth requirement allows us to
take the intersection of any number of sets in any order of pair-wise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by
a binary mapping S:

µA∪B(x) = S(µA(x), µB(x))

For example, the binary operator S can represent the addition of

μ μA x xB( ) ( )and . These fuzzy union operators, which are often referred
to as T-conorm (or S-norm) operators, must satisfy the following basic
requirements:

A T-conorm (or S-norm) operator is a binary mapping S(.,.) satisfying
boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a
monotonicity: S(a, b) <= S(c, d) if a <= c and b <= d
commutativity: S(a, b) = S(b, a)
associativity: S(a, S(b, c)) = S(S(a, b), c)

Several parameterized T-norms and dual T-conorms have been proposed in
the past, such as those of Yager[19], Dubois and Prade [3], Schweizer and
Sklar [14], and Sugeno [15], found in the Appendix A, “Bibliography”. Each
of these provides a way to vary the gain on the function so that it can be
very restrictive or very permissive.

If-Then Rules
Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These
if-then rule statements are used to formulate the conditional statements that
comprise fuzzy logic.

A single fuzzy if-then rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges
(universes of discourse) X and Y, respectively. The if-part of the rule “x is A”
is called the antecedent or premise, while the then-part of the rule “y is B” is
called the consequent or conclusion. An example of such a rule might be

2-15



2 Tutorial

If service is good then tip is average

The concept good is represented as a number between 0 and 1, and so the
antecedent is an interpretation that returns a single number between 0 and
1. Conversely, average is represented as a fuzzy set, and so the consequent
is an assignment that assigns the entire fuzzy set B to the output variable
y. In the if-then rule, the word is gets used in two entirely different ways
depending on whether it appears in the antecedent or the consequent. In
MATLAB terms, this usage is the distinction between a relational test using
“==” and a variable assignment using the “=” symbol. A less confusing way
of writing the rule would be

If service == good then tip = average

In general, the input to an if-then rule is the current value for the input
variable (in this case, service) and the output is an entire fuzzy set (in this
case, average). This set will later be defuzzified, assigning one value to the
output. The concept of defuzzification is described in the next section.

Interpreting an if-then rule involves distinct parts: first evaluating the
antecedent (which involves fuzzifying the input and applying any necessary
fuzzy operators) and second applying that result to the consequent (known
as implication). In the case of two-valued or binary logic, if-then rules do not
present much difficulty. If the premise is true, then the conclusion is true.
If you relax the restrictions of two-valued logic and let the antecedent be a
fuzzy statement, how does this reflect on the conclusion? The answer is a
simple one. if the antecedent is true to some degree of membership, then the
consequent is also true to that same degree.

Thus:

in binary logic: p → q (p and q are either both true or both false.)
in fuzzy logic: 0.5 p→ 0.5 q (Partial antecedents provide partial implication.)

The antecedent of a rule can have multiple parts.

if sky is gray and wind is strong and barometer is falling, then ...

in which case all parts of the antecedent are calculated simultaneously and
resolved to a single number using the logical operators described in the
preceding section. The consequent of a rule can also have multiple parts.

2-16



Foundations of Fuzzy Logic

if temperature is cold then hot water valve is open and cold water valve is
shut

in which case all consequents are affected equally by the result of the
antecedent. How is the consequent affected by the antecedent? The
consequent specifies a fuzzy set be assigned to the output. The implication
function then modifies that fuzzy set to the degree specified by the antecedent.
The most common ways to modify the output fuzzy set are truncation using
the min function (where the fuzzy set is truncated as shown in the following
figure) or scaling using the prod function (where the output fuzzy set is
squashed). Both are supported by the toolbox, but you use truncation for
the examples in this section.

��������
	
��	��	��
���������
	��

��������
����������
�
���

�������	��
	����

�������
��&�������

(�����
�

�� ���)���*����&������� +���*����������
� ������ ���*��(�����
�

���	��������

�������::��

���������������

������  ���	�	����� �!��"�����#	��  ���������� �!��!


	��!�"$�%��������

���������� ,����-
���

� �

� ;

� ;

�� #***��� ��.***% ������ ���*��(�����
�


���!�!$�!�"�� �!�"

�� #***��.***% ���� ���*��(�����
�

� �

� ; � ;

2-17



2 Tutorial

Summary of If-Then Rules
Interpreting if-then rules is a three-part process. This process is explained
in detail in the next section:

1 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree
of membership between 0 and 1. If there is only one part to the antecedent,
then this is the degree of support for the rule.

2 Apply fuzzy operator to multiple part antecedents: If there are
multiple parts to the antecedent, apply fuzzy logic operators and resolve
the antecedent to a single number between 0 and 1. This is the degree of
support for the rule.

3 Apply implication method: Use the degree of support for the entire
rule to shape the output fuzzy set. The consequent of a fuzzy rule
assigns an entire fuzzy set to the output. This fuzzy set is represented
by a membership function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is assigned a
value less than 1), then the output fuzzy set is truncated according to the
implication method.

In general, one rule alone is not effective. Two or more rules that can play off
one another are needed. The output of each rule is a fuzzy set. The output
fuzzy sets for each rule are then aggregated into a single output fuzzy set.
Finally the resulting set is defuzzified, or resolved to a single number. “Build
Mamdani Systems (GUI)” on page 2-35 shows how the whole process works
from beginning to end for a particular type of fuzzy inference system called
a Mamdani type.

References

[1] Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New York, 1980.

[2] Kaufmann, A. and M.M. Gupta, Introduction to Fuzzy Arithmetic, V.N.
Reinhold, 1985.

2-18



Foundations of Fuzzy Logic

[3] Lee, C.-C., “Fuzzy logic in control systems: fuzzy logic controller-parts 1
and 2,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No.
2, pp 404-435, 1990.

[4] Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis
with a fuzzy logic controller," International Journal of Man-Machine Studies,
Vol. 7, No. 1, pp. 1-13, 1975.

[5] Mamdani, E.H., “Advances in the linguistic synthesis of fuzzy controllers,”
International Journal of Man-Machine Studies, Vol. 8, pp. 669-678, 1976.

[6] Mamdani, E.H., “Applications of fuzzy logic to approximate reasoning
using linguistic synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12,
pp. 1182-1191, 1977.

[7] Schweizer, B. and A. Sklar, “Associative functions and abstract
semi-groups,” Publ. Math Debrecen, 10:69-81, 1963.

[8] Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M.
Gupta, G. N. Saridis, and B.R. Gaines, editors) Fuzzy Automata and Decision
Processes, pp. 89-102, North-Holland, NY, 1977.

[9] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science
Pub. Co., 1985.

[10] Yager, R., “On a general class of fuzzy connectives,” Fuzzy Sets and
Systems, 4:235-242, 1980.

[11] Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain
Clustering,” Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp.
209-219, 1994.

[12] Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353,
1965.

[13] Zadeh, L.A., “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

2-19



2 Tutorial

[14] Zadeh, L.A., “The concept of a linguistic variable and its application
to approximate reasoning, Parts 1, 2, and 3,” Information Sciences, 1975,
8:199-249, 8:301-357, 9:43-80.

[15] Zadeh, L.A., “Fuzzy Logic,” Computer, Vol. 1, No. 4, pp. 83-93, 1988.

[16] Zadeh, L.A., “Knowledge representation in fuzzy logic,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, pp. 89-100, 1989.

2-20



Types of Fuzzy Inference Systems

Types of Fuzzy Inference Systems
You can implement two types of fuzzy inference systems in the toolbox:

• Mamdani

• Sugeno

These two types of inference systems vary somewhat in the way outputs are
determined.

Mamdani’s fuzzy inference method is the most commonly seen fuzzy
methodology. Mamdani’s method was among the first control systems built
using fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani [11] as
an attempt to control a steam engine and boiler combination by synthesizing
a set of linguistic control rules obtained from experienced human operators.
Mamdani’s effort was based on Lotfi Zadeh’s 1973 paper on fuzzy algorithms
for complex systems and decision processes [22]. Although the inference
process described in the next few sections differs somewhat from the methods
described in the original paper, the basic idea is much the same.

Mamdani-type inference, as defined for the toolbox, expects the output
membership functions to be fuzzy sets. After the aggregation process,
there is a fuzzy set for each output variable that needs defuzzification. It
is possible, and in many cases much more efficient, to use a single spike
as the output membership function rather than a distributed fuzzy set.
This type of output is sometimes known as a singleton output membership
function, and it can be thought of as a pre-defuzzified fuzzy set. It enhances
the efficiency of the defuzzification process because it greatly simplifies the
computation required by the more general Mamdani method, which finds the
centroid of a two-dimensional function. Rather than integrating across the
two-dimensional function to find the centroid, you use the weighted average
of a few data points. Sugeno-type systems support this type of model. In
general, Sugeno-type systems can be used to model any inference system in
which the output membership functions are either linear or constant.

See the Bibliography for references to descriptions of these two types of fuzzy
inference systems, [8], [11], [16].

Fuzzy inference systems have been successfully applied in fields such as
automatic control, data classification, decision analysis, expert systems, and

2-21



2 Tutorial

computer vision. Because of its multidisciplinary nature, fuzzy inference
systems are associated with a number of names, such as fuzzy-rule-based
systems, fuzzy expert systems, fuzzy modeling, fuzzy associative memory,
fuzzy logic controllers, and simply (and ambiguously) fuzzy systems.

Concepts • “What Is Mamdani-Type Fuzzy Inference?” on page 2-34
• “What Is Sugeno-Type Fuzzy Inference?” on page 2-103
• “Comparison of Sugeno and Mamdani Systems” on page 2-109

2-22



Fuzzy Inference Process

Fuzzy Inference Process
Fuzzy inference is the process of formulating the mapping from a given input
to an output using fuzzy logic. The mapping then provides a basis from which
decisions can be made, or patterns discerned. The process of fuzzy inference
involves all of the pieces that are described in “Membership Functions” on
page 2-7, “Logical Operations” on page 2-12, and “If-Then Rules” on page 2-15.

This section describes the fuzzy inference process and uses the example of
the two-input, one-output, three-rule tipping problem “The Basic Tipping
Problem” on page 1-12 that you saw in the introduction in more detail. The
basic structure of this example is shown in the following diagram:

�������
!����������"��

������
�����#�<#=�

������4
$��	����"��

�

%�������������

�<������&�"�������&�'�����������(

����������	��
�
	��	�������	�	����
����������
��	������

������������������
������	����������
	����������
������������

��������������	
����������������
�������

����������	�������
�����������
�����������������	
��������	����

���������������)��������������	���
	��������&��������������������� 

���	�5

�����������������	&�������������
���
�� ���	�4

�������������������������	�����
���	&
���������������
� 

���	��

Information flows from left to right, from two inputs to a single output. The
parallel nature of the rules is one of the more important aspects of fuzzy logic
systems. Instead of sharp switching between modes based on breakpoints,
logic flows smoothly from regions where the system’s behavior is dominated
by either one rule or another.

Fuzzy inference process comprises of five parts:

• Fuzzification of the input variables

2-23



2 Tutorial

• Application of the fuzzy operator (AND or OR) in the antecedent

• Implication from the antecedent to the consequent

• Aggregation of the consequents across the rules

• Defuzzification

A fuzzy inference diagram displays all parts of the fuzzy inference process —
from fuzzification through defuzzification.

Step 1. Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they
belong to each of the appropriate fuzzy sets via membership functions. In
Fuzzy Logic Toolbox software, the input is always a crisp numerical value
limited to the universe of discourse of the input variable (in this case the
interval between 0 and 10) and the output is a fuzzy degree of membership
in the qualifying linguistic set (always the interval between 0 and 1).
Fuzzification of the input amounts to either a table lookup or a function
evaluation.

This example is built on three rules, and each of the rules depends on
resolving the inputs into a number of different fuzzy linguistic sets: service
is poor, service is good, food is rancid, food is delicious, and so on. Before
the rules can be evaluated, the inputs must be fuzzified according to each of
these linguistic sets. For example, to what extent is the food really delicious?
The following figure shows how well the food at the hypothetical restaurant
(rated on a scale of 0 to 10) qualifies, (via its membership function), as the
linguistic variable delicious. In this case, we rated the food as an 8, which,
given your graphical definition of delicious, corresponds to µ = 0.7 for the
delicious membership function.

2-24



Fuzzy Inference Process

delicious

0.7

food is delicious

food = 8

input

Result of
fuzzification

1. Fuzzify
inputs.

In this manner, each input is fuzzified over all the qualifying membership
functions required by the rules.

Step 2. Apply Fuzzy Operator
After the inputs are fuzzified, you know the degree to which each part of
the antecedent is satisfied for each rule. If the antecedent of a given rule
has more than one part, the fuzzy operator is applied to obtain one number
that represents the result of the antecedent for that rule. This number is
then applied to the output function. The input to the fuzzy operator is two
or more membership values from fuzzified input variables. The output is
a single truth value.

As is described in “Logical Operations” on page 2-12 section, any number of
well-defined methods can fill in for the AND operation or the OR operation.
In the toolbox, two built-in AND methods are supported: min (minimum) and
prod (product). Two built-in OR methods are also supported: max (maximum),
and the probabilistic OR method probor. The probabilistic OR method (also
known as the algebraic sum) is calculated according to the equation

probor(a,b) = a + b - ab

In addition to these built-in methods, you can create your own methods for
AND and OR by writing any function and setting that to be your method
of choice.

The following figure shows the OR operator max at work, evaluating the
antecedent of the rule 3 for the tipping calculation. The two different pieces
of the antecedent (service is excellent and food is delicious) yielded the fuzzy

2-25



2 Tutorial

membership values 0.0 and 0.7 respectively. The fuzzy OR operator simply
selects the maximum of the two values, 0.7, and the fuzzy operation for rule 3
is complete. The probabilistic OR method would still result in 0.7.

�
������


 �
��
��

0/00/0

0/6
0/6


	���
����
 �
��
�� ���������
��������

�����7�8

�����*

��������	
	�

���������


	���
�7��

������

��������
� �����������!��

"��#�

�	�
�������

Step 3. Apply Implication Method
Before applying the implication method, you must determine the rule’s
weight. Every rule has a weight (a number between 0 and 1), which is applied
to the number given by the antecedent. Generally, this weight is 1 (as it is
for this example) and thus has no effect at all on the implication process.
From time to time you may want to weight one rule relative to the others by
changing its weight value to something other than 1.

After proper weighting has been assigned to each rule, the implication method
is implemented. A consequent is a fuzzy set represented by a membership
function, which weights appropriately the linguistic characteristics that are
attributed to it. The consequent is reshaped using a function associated with
the antecedent (a single number). The input for the implication process
is a single number given by the antecedent, and the output is a fuzzy set.
Implication is implemented for each rule. Two built-in methods are supported,
and they are the same functions that are used by the AND method: min
(minimum), which truncates the output fuzzy set, and prod (product), which
scales the output fuzzy set.

2-26



Fuzzy Inference Process

�������
�

�&�������

(�����
�

*$ ���)���*����&������� +���*����������
� ������ ���*8�(�����
�

+���*/*0

�����*

�������	

��������	�

���)���*/*1

������

������
��������	�
	����	��������

��������
������������
����

�������	��
	�����

���������� ,����-
���

Step 4. Aggregate All Outputs

Because decisions are based on the testing of all of the rules in a FIS, the rules
must be combined in some manner in order to make a decision. Aggregation is
the process by which the fuzzy sets that represent the outputs of each rule are
combined into a single fuzzy set. Aggregation only occurs once for each output
variable, just prior to the fifth and final step, defuzzification. The input of the
aggregation process is the list of truncated output functions returned by the
implication process for each rule. The output of the aggregation process is one
fuzzy set for each output variable.

As long as the aggregation method is commutative (which it always should
be), then the order in which the rules are executed is unimportant. Three
built-in methods are supported:

• max (maximum)

• probor (probabilistic OR)

• sum (simply the sum of each rule’s output set)

2-27



2 Tutorial

In the following diagram, all three rules have been placed together to show
how the output of each rule is combined, or aggregated, into a single fuzzy set
whose membership function assigns a weighting for every output (tip) value.

��������
	

��
	���
��������	���

��������
	�

�
��������
�� �$��!��

"��#�

�	���������
%�������
����������
�������������

&�������������������������'( &�������������������������'(

&�������������������������'(&�������������������������'(

&�������������������������'( &�������������������������'(

&������������������������������'(

���������


���
��

����

�5�������

�
���� ���
���

��������

�����7�8

�����*

��������
	

��
	���

�����*��
�
������������
��������*


	���
�7��

������

*$ 
	���
�������	 ��������	����� ������ ����8���
��

*$ 
	���
�������� ���� ����8���
	��


*$ 
	���
����
 �
��
�� ���������
������ ������ ����8��
�
	��

��

��

��

Step 5. Defuzzify
The input for the defuzzification process is a fuzzy set (the aggregate output
fuzzy set) and the output is a single number. As much as fuzziness helps
the rule evaluation during the intermediate steps, the final desired output
for each variable is generally a single number. However, the aggregate of a
fuzzy set encompasses a range of output values, and so must be defuzzified in
order to resolve a single output value from the set.

Perhaps the most popular defuzzification method is the centroid calculation,
which returns the center of area under the curve. There are five built-in

2-28



Fuzzy Inference Process

methods supported: centroid, bisector, middle of maximum (the average of
the maximum value of the output set), largest of maximum, and smallest
of maximum.

�����
����
�����
����������	����
������	����

�������	


��
����
�����	�

���*/*�2�.3

!���������������������������������������������&'

Fuzzy Inference Diagram
The fuzzy inference diagram is the composite of all the smaller diagrams
presented so far in this section. It simultaneously displays all parts of the
fuzzy inference process you have examined. Information flows through the
fuzzy inference diagram as shown in the following figure.

2-29



2 Tutorial

���
�*4���
�*�

��*�+ ��� �	��

4�*�+ ��� �	��

�
��
�

*��������������
$�++����$������
��
��
	

In this figure, the flow proceeds up from the inputs in the lower left, then
across each row, or rule, and then down the rule outputs to finish in the lower
right. This compact flow shows everything at once, from linguistic variable
fuzzification all the way through defuzzification of the aggregate output.

2-30



Fuzzy Inference Process

The following figure shows the actual full-size fuzzy inference diagram. There
is a lot to see in a fuzzy inference diagram, but after you become accustomed
to it, you can learn a lot about a system very quickly. For instance, from this
diagram with these particular inputs, you can easily see that the implication
method is truncation with the min function. The max function is being used
for the fuzzy OR operation. Rule 3 (the bottom-most row in the diagram
shown previously) is having the strongest influence on the output. and so on.
The Rule Viewer described in “The Rule Viewer” on page 2-57 is a MATLAB
implementation of the fuzzy inference diagram.

Concepts • “Membership Functions” on page 2-7
• “Logical Operations” on page 2-12

2-31



2 Tutorial

• “If-Then Rules” on page 2-15

2-32



Customization

Customization
One of the primary goals of Fuzzy Logic Toolbox software is to have an
open and easily modified fuzzy inference system structure. The toolbox is
designed to give you as much freedom as possible, within the basic constraints
of the process described, to customize the fuzzy inference process for your
application.

“Build Mamdani Systems (GUI)” on page 2-35 describes exactly how to build
and implement a fuzzy inference system using the tools provided. To learn
how to customize a fuzzy inference system, see “Build Mamdani Systems
Using Custom Functions” on page 2-62.

2-33



2 Tutorial

What Is Mamdani-Type Fuzzy Inference?
Mamdani’s fuzzy inference method is the most commonly seen fuzzy
methodology. Mamdani’s method was among the first control systems built
using fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani [11] as
an attempt to control a steam engine and boiler combination by synthesizing
a set of linguistic control rules obtained from experienced human operators.
Mamdani’s effort was based on Lotfi Zadeh’s 1973 paper on fuzzy algorithms
for complex systems and decision processes [22]. Although the inference
process described in the next few sections differs somewhat from the methods
described in the original paper, the basic idea is much the same.

Mamdani-type inference, as defined for the toolbox, expects the output
membership functions to be fuzzy sets. After the aggregation process, there is
a fuzzy set for each output variable that needs defuzzification.

Related
Examples

• “Build Mamdani Systems (GUI)” on page 2-35
• “Build Mamdani Systems (Code)” on page 2-76
• “Build Mamdani Systems Using Custom Functions” on page 2-62

Concepts • “Comparison of Sugeno and Mamdani Systems” on page 2-109
• “What Is Sugeno-Type Fuzzy Inference?” on page 2-103

2-34



Build Mamdani Systems (GUI)

Build Mamdani Systems (GUI)

In this section...

“How to Build Mamdani Systems Using Fuzzy Logic Toolbox Graphical
User Interface Tools” on page 2-35

“The Basic Tipping Problem” on page 2-37

“The FIS Editor” on page 2-38

“The Membership Function Editor” on page 2-43

“The Rule Editor” on page 2-53

“The Rule Viewer” on page 2-57

“The Surface Viewer” on page 2-59

“Importing and Exporting from the GUI Tools” on page 2-61

How to Build Mamdani Systems Using Fuzzy Logic
Toolbox Graphical User Interface Tools
This example shows how to build a Fuzzy Inference System (FIS) for the
tipping example, described in “The Basic Tipping Problem” on page 2-37,
using the Fuzzy Logic Toolbox graphical user interface (GUI) tools.

You use the following graphical tools to build, edit, and view fuzzy inference
systems:

• Fuzzy Inference System (FIS) Editor to handle the high-level issues for
the system—How many input and output variables? What are their names?

Fuzzy Logic Toolbox software does not limit the number of inputs.
However, the number of inputs may be limited by the available memory
of your machine. If the number of inputs is too large, or the number of
membership functions is too big, then it may also be difficult to analyze
the FIS using the other GUI tools.

• Membership Function Editor to define the shapes of all the membership
functions associated with each variable

• Rule Editor to edit the list of rules that defines the behavior of the system.

2-35



2 Tutorial

• Rule Viewer to view the fuzzy inference diagram. Use this viewer as a
diagnostic to see, for example, which rules are active, or how individual
membership function shapes influence the results

• Surface Viewer to view the dependency of one of the outputs on any one
or two of the inputs—that is, it generates and plots an output surface map
for the system.

These GUIs are dynamically linked, in that changes you make to the FIS
using one of them, affect what you see on any of the other open GUIs. For
example, if you change the names of the membership functions in the
Membership Function Editor, the changes are reflected in the rules shown in
the Rule Editor. You can use the GUIs to read and write variables both to the
MATLAB workspace and to a file (the read-only viewers can still exchange
plots with the workspace and save them to a file). You can have any or all of
them open for any given system or have multiple editors open for any number
of FIS systems.

Fuzzy
Inference
System

FIS Editor

Membership
Function EditorRule Editor

Rule Viewer Surface Viewer

Read-only
tools

2-36



Build Mamdani Systems (GUI)

The following figure shows how the main components of a FIS and the three
editors fit together. The two viewers examine the behavior of the entire
system.

��%��

�#	�&	�	
���'�	((( ���%	����������%�	(((

)��	

��%��
�	
�
*���	
%
	�+

"��%��
�	
�
*����+

"��%�� 	
,��	

���	
,��	���%��
��#	����%����#	�%
���	
,��	���������#	����%����,	
��	
���	
,��	���	��	��	����#	����%����	�	
��

-%��
.
����.

	��	��	��/

-�#	�%.
�,	
��	.
�	�	
��/

	
,��	�0 ��%�0

��%

�#	�& �������
(((

�#	����������


�#	�)��	������


�#	��	��	
#�%
��������������


In addition to these five primary GUIs, the toolbox includes the graphical
ANFIS Editor GUI, which you use to build and analyze Sugeno-type adaptive
neuro-fuzzy inference systems.

The Fuzzy Logic Toolbox GUIs do not support building FIS using data. If you
want to use data to build a FIS, use one of the following techniques:

• genfis1, genfis2, or genfis3 commands to generate a Sugeno-type FIS.
Then, select File > Import in the FIS Editor to import the FIS and perform
fuzzy inference, as described in “The FIS Editor” on page 2-38.

• Neuro-adaptive learning techniques to model the FIS, as described in “anfis
and the ANFIS Editor GUI” on page 2-110.

If you wan to use MATLAB workspace variables, use the command-line
interface instead of the FIS Editor. For an example, see “Building a System
from Scratch” on page 2-82.

The Basic Tipping Problem
This example uses a two-input, one-output tipping problem based on tipping
practices in the U.S.

2-37



2 Tutorial

Given a number between 0 and 10 that represents the quality of service at
a restaurant (where 10 is excellent), and another number between 0 and
10 that represents the quality of the food at that restaurant (again, 10 is
excellent), what should the tip be?

The starting point is to write down the three golden rules of tipping:

1 If the service is poor or the food is rancid, then tip is cheap.

2 If the service is good, then tip is average.

3 If the service is excellent or the food is delicious, then tip is generous.

Assume that an average tip is 15%, a generous tip is 25%, and a cheap tip is
5%.

Obviously the numbers and the shape of the curve are subject to local
traditions, cultural bias, and so on, but the three rules are generally universal.

Now that you know the rules and have an idea of what the output should
look like, use the GUI tools to construct a fuzzy inference system for this
decision process.

The FIS Editor
The FIS Editor displays information about a fuzzy inference system. To open
the FIS Editor, type the following command at the MATLAB prompt:

2-38



Build Mamdani Systems (GUI)

fuzzy

The FIS Editor opens and displays a diagram of the fuzzy inference system
with the names of each input variable on the left, and those of each output
variable on the right, as shown in the next figure. The sample membership
functions shown in the boxes are just icons and do not depict the actual
shapes of the membership functions.

����� �����������
�����!"�������!"�������	��!
����##�����	���

������� �� �	
������	
���������� ���	�������	
�
�������
������ 	����$��	���

������� �� �	
�
���	������!����	�
�����	
��%����$��	���

������� �� �	
����	��	
���������� ���	�������	
�
�������
������ 	����$��	���

Below the diagram is the name of the system and the type of inference used.

2-39



2 Tutorial

&�������	
�����	���
��� 
��!���	"����� 	
��������	
�������������
����

'�	�����������(��	��!�	
����##�
������� ����� 	����"��� 

���	
������##��� �	������	
���

�	�	����������� �����
	
�����	��� ��	������	����

&�������	
������ 	�������	
�����	��	�����������

In this example, you use the default Mamdani-type inference. Another type
of inference, called Sugeno-type inference, is also available. See “What Is
Sugeno-Type Fuzzy Inference?” on page 2-103.

In the FIS Editor:

• The drop-down lists let you modify the fuzzy inference functions.

• The Current Variable area displays the name of either an input or output
variable, its type, and default range.

• A status line at the bottom displays information about the most recent
operation.

To build the Fuzzy Inference System described in “The Basic Tipping
Problem” on page 2-37 from scratch, type the following command at the
MATLAB prompt:

fuzzy

2-40



Build Mamdani Systems (GUI)

The generic untitled FIS Editor opens, with one input input1, and one output
output1.

Tip To open the FIS Editor with the prebuilt fuzzy inference system stored
in tipper.fis, type

fuzzy tipper

However, if you load the prebuilt system, you will not build rules or construct
membership functions.

In this example, you construct a two-input, one output system. The two
inputs are service and food. The one output is tip.

To add a second input variable and change the variable names to reflect these
designations:

2-41



2 Tutorial

1 Select Edit > Add variable > Input.

A second yellow box labeled input2 appears.

2 Click the yellow box input1. This box is highlighted with a red outline.

3 Edit the Name field from input1 to service, and press Enter.

4 Click the yellow box input2. This box is highlighted with a red outline.

5 Edit the Name field from input2 to food, and press Enter.

6 Click the blue box output1.

7 Edit the Name field from output1 to tip, and press Enter.

8 Select File > Export > To Workspace.

9 Enter the Workspace variable name tipper, and click OK.

The diagram is updated to reflect the new names of the input and output
variables. There is now a new variable in the workspace called tipper that
contains all the information about this system. By saving to the workspace
with a new name, you also rename the entire system. Your window looks
something like the following diagram.

2-42



Build Mamdani Systems (GUI)

Leave the inference options in the lower left in their default positions for now.
You have entered all the information you need for this particular GUI. Next,
define the membership functions associated with each of the variables. To do
this, open the Membership Function Editor.

You can open the Membership Function Editor in one of three ways:

• Within the FIS Editor window, select Edit > Membership Functions..

• Within the FIS Editor window, double-click the blue icon called tip.

• At the command line, type mfedit.

The Membership Function Editor
The Membership Function Editor is the tool that lets you display and edit
all of the membership functions associated with all of the input and output
variables for the entire fuzzy inference system. The Membership Function

2-43



2 Tutorial

Editor shares some features with the FIS Editor, as shown in the next figure.
In fact, all of the five basic GUI tools have similar menu options, status lines,
and Help and Close buttons.

����� �����������
�����!"�������!"��������	��!
����##�����	���

)*��������+���		�)������
,�� ������������	�����	��	�
�������
������ 	�����

-���
�������������
�������
������ 	����
����	
������ 	������������

,�� ��������	�� 
��!���	���		����	��"
�� 
��������"�	���"����������� ���������	����
���!�	
�� �����	��������	����	�� 
��!���	���
����

2-44



Build Mamdani Systems (GUI)

�
����	�	�������
��� ������	
�����	
�� ��	������	����

&��������	������
 �����	����������

��	�	
�����!�
���	
�� �����	����������

��	�	
�������������!�
���	
�� �����	����	�

���� 	�	
��	������
 �����	��������
��
��� 	����

,
��!��	
�������� ��
������	�������� �����	
�������
������ 	����

$��	��������� �����	
�������
������ 	����

When you open the Membership Function Editor to work on a fuzzy inference
system that does not already exist in the workspace, there are no membership
functions associated with the variables that you defined with the FIS Editor.

On the upper-left side of the graph area in the Membership Function Editor is
a “Variable Palette” that lets you set the membership functions for a given
variable.

To set up the membership functions associated with an input or an output
variable for the FIS, select a FIS variable in this region by clicking it.

Next select the Edit pull-down menu, and choose Add MFs .. A new window
appears, which allows you to select both the membership function type and
the number of membership functions associated with the selected variable.
In the lower-right corner of the window are the controls that let you change
the name, type, and parameters (shape), of the membership function, after
it is selected.

The membership functions from the current variable are displayed in the main
graph. These membership functions can be manipulated in two ways. You

2-45



2 Tutorial

can first use the mouse to select a particular membership function associated
with a given variable quality, (such as poor, for the variable, service), and
then drag the membership function from side to side. This action affects the
mathematical description of the quality associated with that membership
function for a given variable. The selected membership function can also be
tagged for dilation or contraction by clicking on the small square drag points
on the membership function, and then dragging the function with the mouse
toward the outside, for dilation, or toward the inside, for contraction. This
action changes the parameters associated with that membership function.

Below the Variable Palette is some information about the type and name of
the current variable. There is a text field in this region that lets you change
the limits of the current variable’s range (universe of discourse) and another
that lets you set the limits of the current plot (which has no real effect on
the system).

The process of specifying the membership functions for the two input tipping
example, tipper, is as follows:

1 Double-click the input variable service to open the Membership Function
Editor.

2-46



Build Mamdani Systems (GUI)

2 In the Membership Function Editor, enter [0 10] in the Range and the
Display Range fields.

3 Create membership functions for the input variable service.

a Select Edit > Remove All MFs to remove the default membership
functions for the input variable service.

b Select Edit > Add MFs. to open the Membership Functions dialog box.

c In the Membership Functions dialog box, select gaussmf as the MF
Type.

2-47



2 Tutorial

d Verify that 3 is selected as the Number of MFs.

e Click OK to add three Gaussian curves to the input variable service.

4 Rename the membership functions for the input variable service, and
specify their parameters.

a Click on the curve named mf1 to select it, and specify the following fields
in the Current Membership Function (click on MF to select) area:

• In the Name field, enter poor.

• In the Params field, enter [1.5 0].

The two inputs of Params represent the standard deviation and
center for the Gaussian curve.

Tip To adjust the shape of the membership function, type in a desired
parameters or use the mouse, as described previously.

The Membership Function Editor: tipper window looks similar to
the following figure.

2-48



Build Mamdani Systems (GUI)

b Click on the curve named mf2 to select it, and specify the following fields
in the Current Membership Function (click on MF to select) area:

• In the Name field, enter good.

• In the Params field, enter [1.5 5].

c Click on the curve named mf3, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter excellent.

• In the Params field, enter [1.5 10].

The Membership Function Editor window looks similar to the following
figure.

2-49



2 Tutorial

5 In the FIS Variables area, click the input variable food to select it.

6 Enter [0 10] in the Range and the Display Range fields.

7 Create the membership functions for the input variable food.

a Select Edit > Remove All MFs to remove the default Membership
Functions for the input variable food.

b Select Edit > Add MFs to open the Membership Functions dialog box.

c In the Membership Functions dialog box, select trapmf as theMF Type.

d Select 2 in the Number of MFs drop-down list.

e Click OK to add two trapezoidal curves to the input variable food.

2-50



Build Mamdani Systems (GUI)

8 Rename the membership functions for the input variable food, and specify
their parameters:

a In the FIS Variables area, click the input variable food to select it.

b Click on the curve named mf1, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter rancid.

• In the Params field, enter [0 0 1 3].

c Click on the curve named mf2 to select it, and enter delicious in the
Name field.

Reset the associated parameters if desired.

9 Click on the output variable tip to select it.

10 Enter [0 30] in the Range and the Display Range fields to cover the
output range.

The inputs ranges from 0 to 10, but the output is a tip between 5% and 25%.

11 Rename the default triangular membership functions for the output
variable tip, and specify their parameters.

a Click the curve named mf1 to select it, and specify the following fields in
the Current Membership Function (click on MF to select) area:

• In the Name field, enter cheap.

• In the Params field, enter [0 5 10].

b Click the curve named mf2 to select it, and specify the following fields in
the Current Membership Function (click on MF to select) area:

• In the Name field, enter average.

• In the Params field, enter [10 15 20].

c Click the curve named mf3 to select it, and specify the following:

• In the Name field, enter generous.

• In the Params field, enter [20 25 30].

The Membership Function Editor looks similar to the following figure.

2-51



2 Tutorial

Now that the variables have been named and the membership functions
have appropriate shapes and names, you can enter the rules. To call up the
Rule Editor, go to the Edit menu and select Rules, or type ruleedit at the
command line.

2-52



Build Mamdani Systems (GUI)

The Rule Editor

.���	������	��	����� 	����������

�
�����������
��	����
��	���	� ����
����!�	
��-/.
	�����

�
��������	���������
����	������"�����"���
���	�����##�����	��
����!��������	
������
���� �-/.�	�����

0�������	
�	�	����	�����������

�
����	�	�������
��� ������	
�����	
�� ��	������	����

&�!�	������	������	��	
�	�	����	����������� ,���	��������	���������	
�	
��-/.���		�������

 
�� ��������	
������	������	��	����� 	����������
�
��1������		��
!���������
�������	��������	

���	
��%����$��	��
����"�����	
�
,�������		��� �����
	
���������

Constructing rules using the graphical Rule Editor interface is fairly self
evident. Based on the descriptions of the input and output variables defined
with the FIS Editor, the Rule Editor allows you to construct the rule
statements automatically, From the GUI, you can:

• Create rules by selecting an item in each input and output variable box,
selecting one Connection item, and clicking Add Rule. You can choose

2-53



2 Tutorial

none as one of the variable qualities to exclude that variable from a given
rule and choose not under any variable name to negate the associated
quality.

• Delete a rule by selecting the rule and clicking Delete Rule.

• Edit a rule by changing the selection in the variable box and clicking
Change Rule.

• Specify weight to a rule by typing in a desired number between 0 and 1 in
Weight. If you do not specify the weight, it is assumed to be unity (1).

Similar to those in the FIS Editor and the Membership Function Editor, the
Rule Editor has the menu bar and the status line. The menu items allow
you to open, close, save and edit a fuzzy system using the five basic GUI
tools. From the menu, you can also:

• Set the format for the display by selecting Options > Format.

• Set the language by selecting Options > Language.

You can access information about the Rule Editor by clicking Help and close
the GUI using Close.

To insert the first rule in the Rule Editor, select the following:

• poor under the variable service

• rancid under the variable food

• The or radio button, in the Connection block

• cheap, under the output variable, tip.

Then, click Add rule.

The resulting rule is

1. If (service is poor) or (food is rancid) then (tip is cheap) (1)

The numbers in the parentheses represent weights.

Follow a similar procedure to insert the second and third rules in the Rule
Editor to get

2-54



Build Mamdani Systems (GUI)

1 If (service is poor) or (food is rancid) then (tip is cheap) (1)

2 If (service is good) then (tip is average) (1)

3 If (service is excellent) or (food is delicious) then (tip is generous) (1)

Tip To change a rule, first click on the rule to be changed. Next make the
desired changes to that rule, and then click Change rule. For example, to
change the first rule to

1. If (service not poor) or (food not rancid) then (tip is not cheap) (1)

Select the not check box under each variable, and then click Change rule.

The Format pop-up menu from the Options menu indicates that you are
looking at the verbose form of the rules. Try changing it to symbolic. You
will see

1. (service==poor) | (food==rancid) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) | (food==delicious) => (tip=generous) (1)

There is not much difference in the display really, but it is slightly more
language neutral, because it does not depend on terms like if and then. If
you change the format to indexed, you see an extremely compressed version
of the rules.

1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

This is the version of the rules that the machine deals with.

• The first column in this structure corresponds to the input variables.

• The second column corresponds to the output variable.

• The third column displays the weight applied to each rule.

• The fourth column is shorthand that indicates whether this is an OR (2)
rule or an AND (1) rule.

2-55



2 Tutorial

• The numbers in the first two columns refer to the index number of the
membership function.

A literal interpretation of rule 1 is “If input 1 is MF1 (the first membership
function associated with input 1) or if input 2 is MF1, then output 1 should
be MF1 (the first membership function associated with output 1) with the
weight 1.

The symbolic format does not consider the terms, if, then, and so on. The
indexed format doesn’t even bother with the names of your variables.
Obviously the functionality of your system doesn’t depend on how well you
have named your variables and membership functions. The whole point of
naming variables descriptively is, as always, making the system easier for
you to interpret. Thus, unless you have some special purpose in mind, it is
probably be easier for you to continue with the verbose format.

At this point, the fuzzy inference system has been completely defined, in that
the variables, membership functions, and the rules necessary to calculate tips
are in place. Now, look at the fuzzy inference diagram presented at the end of
the previous section and verify that everything is behaving the way you think
it should. You can use the Rule Viewer, the next of the GUI tools we’ll look at.
From the View menu, select Rules.

2-56



Build Mamdani Systems (GUI)

The Rule Viewer

The Rule Viewer displays a roadmap of the whole fuzzy inference process. It
is based on the fuzzy inference diagram described in the previous section. You
see a single figure window with 10 plots nested in it. The three plots across
the top of the figure represent the antecedent and consequent of the first rule.
Each rule is a row of plots, and each column is a variable. The rule numbers
are displayed on the left of each row. You can click on a rule number to view
the rule in the status line.

• The first two columns of plots (the six yellow plots) show the membership
functions referenced by the antecedent, or the if-part of each rule.

• The third column of plots (the three blue plots) shows the membership
functions referenced by the consequent, or the then-part of each rule.

2-57



2 Tutorial

Notice that under food, there is a plot which is blank. This corresponds to
the characterization of none for the variable food in the second rule.

• The fourth plot in the third column of plots represents the aggregate
weighted decision for the given inference system.

This decision will depend on the input values for the system. The
defuzzified output is displayed as a bold vertical line on this plot.

The variables and their current values are displayed on top of the columns. In
the lower left, there is a text field Input in which you can enter specific input
values. For the two-input system, you will enter an input vector, [9 8], for
example, and then press Enter. You can also adjust these input values by
clicking on any of the three plots for each input. This will move the red index
line horizontally, to the point where you have clicked. Alternatively, you can
also click and drag this line in order to change the input values. When you
release the line, (or after manually specifying the input), a new calculation is
performed, and you can see the whole fuzzy inference process take place:

• Where the index line representing service crosses the membership function
line “service is poor” in the upper-left plot determines the degree to which
rule one is activated.

• A yellow patch of color under the actual membership function curve is used
to make the fuzzy membership value visually apparent.

Each of the characterizations of each of the variables is specified with respect
to the input index line in this manner. If you follow rule 1 across the top of
the diagram, you can see the consequent “tip is cheap” has been truncated to
exactly the same degree as the (composite) antecedent—this is the implication
process in action. The aggregation occurs down the third column, and the
resultant aggregate plot is shown in the single plot appearing in the lower
right corner of the plot field. The defuzzified output value is shown by the
thick line passing through the aggregate fuzzy set.

You can shift the plots using left, right, down, and up. The menu items allow
you to save, open, or edit a fuzzy system using any of the five basic GUI tools.

The Rule Viewer allows you to interpret the entire fuzzy inference process
at once. The Rule Viewer also shows how the shape of certain membership
functions influences the overall result. Because it plots every part of every

2-58



Build Mamdani Systems (GUI)

rule, it can become unwieldy for particularly large systems, but, for a
relatively small number of inputs and outputs, it performs well (depending on
how much screen space you devote to it) with up to 30 rules and as many as
6 or 7 variables.

The Rule Viewer shows one calculation at a time and in great detail. In this
sense, it presents a sort of micro view of the fuzzy inference system. If you
want to see the entire output surface of your system—the entire span of the
output set based on the entire span of the input set—you need to open up the
Surface Viewer. This viewer is the last of the five basic Fuzzy Logic Toolbox
GUI tools. To open the Surface Viewer, select Surface from the View menu.

The Surface Viewer

2-59



2 Tutorial

Upon opening the Surface Viewer, you see a three-dimensional curve that
represents the mapping from food and service quality to tip amount. Because
this curve represents a two-input one-output case, you can see the entire
mapping in one plot. When we move beyond three dimensions overall, we
start to encounter trouble displaying the results.

Accordingly, the Surface Viewer is equipped with drop-down menus X
(input):, Y (input): and Z (output): that let you select any two inputs
and any one output for plotting. Below these menus are two input fields X
grids: and Y grids: that let you specify how many x-axis and y-axis grid
lines you want to include. This capability allows you to keep the calculation
time reasonable for complex problems.

If you want to create a smoother plot, use the Plot points field to specify the
number of points on which the membership functions are evaluated in the
input or output range. By default, the value of this field is 101.

Clicking Evaluate initiates the calculation, and the plot is generated after
the calculation is complete. To change the x-axis or y-axis grid after the
surface is in view, change the appropriate input field, and press Enter. The
surface plot is updated to reflect the new grid settings.

The Surface Viewer has a special capability that is very helpful in cases with
two (or more) inputs and one output: you can grab the axes, using the mouse
and reposition them to get a different three-dimensional view on the data.

The Ref. Input field is used in situations when there are more inputs
required by the system than the surface is mapping. You can edit this field to
explicitly set inputs not specified in the surface plot.

Suppose you have a four-input one-output system and would like to see the
output surface. The Surface Viewer can generate a three-dimensional output
surface where any two of the inputs vary, but two of the inputs must be held
constant because computer monitors cannot display a five-dimensional shape.
In such a case, the input is a four-dimensional vector with NaNs holding the
place of the varying inputs while numerical values indicates those values that
remain fixed. A NaN is the IEEE® symbol for Not a Number.

2-60



Build Mamdani Systems (GUI)

The menu items allow you to open, close, save and edit a fuzzy system using
the five basic GUI tools. You can access information about the Surface Viewer
by clicking Help and close the GUI using Close.

This concludes the quick walk-through of each of the main GUI tools. For the
tipping problem, the output of the fuzzy system matches your original idea of
the shape of the fuzzy mapping from service to tip fairly well. In hindsight,
you might say, “Why bother? I could have just drawn a quick lookup table
and been done an hour ago!” However, if you are interested in solving an
entire class of similar decision-making problems, fuzzy logic may provide
an appropriate tool for the solution, given its ease with which a system can
be quickly modified.

Importing and Exporting from the GUI Tools
When you save a fuzzy system to a file, you are saving an ASCII text FIS file
representation of that system with the file suffix .fis. This text file can be
edited and modified and is simple to understand. When you save your fuzzy
system to the MATLAB workspace, you are creating a variable (whose name
you choose) that acts as a MATLAB structure for the FIS system. FIS files
and FIS structures represent the same system.

Note If you do not save your FIS to a file, but only save it to the MATLAB
workspace, you cannot recover it for use in a new MATLAB session.

2-61



2 Tutorial

Build Mamdani Systems Using Custom Functions

In this section...

“How to Build Fuzzy Inference Systems Using Custom Functions in the
GUI” on page 2-62

“Specifying Custom Membership Functions” on page 2-64

“Specifying Custom Inference Functions” on page 2-70

How to Build Fuzzy Inference Systems Using Custom
Functions in the GUI
When you build a fuzzy inference system, as described in “Fuzzy Inference
Process” on page 2-23, you can replace the built-in membership functions or
inference functions, or both with custom functions. In this section, you learn
how to build a fuzzy inference system using custom functions in the GUI. To
learn how to build the system using custom functions at the command line,
see “Specifying Custom Membership and Inference Functions” on page 2-85
in “Build Mamdani Systems (Code)” on page 2-76.

To build a fuzzy inference system using custom functions in the GUI:

1 Open the FIS Editor by typing fuzzy at the MATLAB prompt.

2 Specify the number of inputs and outputs of the fuzzy system, as described
in “The FIS Editor” on page 2-38.

3 Create custom membership functions, and replace the built-in membership
functions with them, as described in “Specifying Custom Membership
Functions” on page 2-64.

Membership functions define how each point in the input space is mapped
to a membership value between 0 and 1.

4 Create rules using the Rule Editor, as described in “The Rule Editor” on
page 2-53.

Rules define the logical relationship between the inputs and the outputs.

2-62



Build Mamdani Systems Using Custom Functions

5 Create custom inference functions, and replace the built in inference
functions with them, as described in “Specifying Custom Inference
Functions” on page 2-70.

Inference methods include the AND, OR, implication, aggregation and
defuzzification methods. This action generates the output values for the
fuzzy system.

The next figure shows the tipping problem example where the built-in
Implication and Defuzzification functions are replaced with a custom
implication function, customimp, and custom defuzzification function,
customdefuzz, respectively.

6 Select View > Surface to view the output of the fuzzy inference system in
the Surface Viewer, as described in “The Surface Viewer” on page 2-59.

2-63



2 Tutorial

Specifying Custom Membership Functions
You can create custom membership functions, and use them in the fuzzy
inference process. The values of these functions must lie between 0 and 1. You
must save the custom membership functions in your current working folder.
To learn how to build fuzzy systems using custom membership functions,
see “How to Build Fuzzy Inference Systems Using Custom Functions in the
GUI” on page 2-62.

To create a custom membership function, and replace the built-in membership
function:

1 Create a MATLAB function, and save it in your current working folder.

To learn how to create MATLAB functions, see “Scripts vs. Functions” in
the MATLAB documentation.

The following code is an example of a multi-step custom membership
function, custmf1, that depends on eight parameters between 0 and 10.

% Function to generate a multi-step custom membership function
% using 8 parameters for the input argument x
function out = custmf1(x, params)
for i=1:length(x)
if x(i)<params(1)
y(i)=params(1);

elseif x(i)<params(2)
y(i)=params(2);

elseif x(i)<params(3)
y(i)=params(3);

elseif x(i)<params(4)
y(i)=params(4);

elseif x(i)<params(5)
y(i)=params(5);

elseif x(i)<params(6)
y(i)=params(6);

elseif x(i)<params(7)
y(i)=params(7);

elseif x(i)<params(8)
y(i)=params(8);

else

2-64



Build Mamdani Systems Using Custom Functions

y(i)=0;
end
end
out=.1*y'; % scaling the output to lie between 0 and 1

Note Custom membership functions can include a maximum of 16
parameters for the input argument.

2 Open the FIS Editor by typing fuzzy at the MATLAB prompt, if you have
not done so already.

The FIS Editor opens with the default FIS name, Untitled, and contains
one input input1, and one output output1.

2-65



2 Tutorial

3 In the FIS Editor, select Edit > Membership Functions to open the
Membership Function Editor.

Three triangular-shaped membership functions for input1 are displayed
by default.

4 To replace the default membership function with a custom function in
the Membership Function Editor:

a Select Edit > Remove All MFs to remove the default membership
functions for input1.

2-66



Build Mamdani Systems Using Custom Functions

b Select Edit > Add Custom MF to open the Custom Membership
Function dialog box.

5 To specify a custom function in the Custom Membership Function dialog
box:

a Specify a name for the custom membership function in the MF name
field.

Note When adding additional custom membership functions, you must
specify a different MF name for each function.

b Specify the name of the custom membership function file in the M-file
function name field.

c Specify a vector of parameters in the Parameter list field.

These values determine the shape and position of the membership
function, and the function is evaluated using these parameter values.

Note The length of the parameter vector must be greater than or equal
to the number of parameters in the custom membership function.

2-67



2 Tutorial

Using the custmf1 example in step 1, the Custom Membership Function
dialog box looks similar to the following figure.

d Click OK to add the custom membership function.

The Membership Function Editor displays the custom membership function
plot.

2-68



Build Mamdani Systems Using Custom Functions

This action also adds the custom membership function to the Rule Viewer,
and is now available for creating rules for the fuzzy inference process. To
view the custom function in the Rule Viewer, select Edit > Rules in either
the FIS Editor or the Membership Function Editor.

2-69



2 Tutorial

6 To add custom membership functions for output1, select it in the
Membership Function Editor, and repeat steps 4 and 5.

Specifying Custom Inference Functions
You can replace the built-in AND, OR, implication, aggregation, and
defuzzification inference methods with custom functions. After you create the
custom inference function, save it in your current working folder. To learn
how to build fuzzy systems using custom inference functions, see the “How
to Build Fuzzy Inference Systems Using Custom Functions in the GUI” on
page 2-62 section.

You must follow a few guidelines when creating custom inference functions.
The guidelines for creating and specifying the functions for building fuzzy
inference systems are described in the following sections.

2-70



Build Mamdani Systems Using Custom Functions

• “Guidelines for Creating Custom AND and OR Functions” on page 2-71

• “Guidelines for Creating Custom Implication Functions” on page 2-72

• “Guidelines for Creating Custom Aggregation Functions” on page 2-72

• “Guidelines for Creating Custom Defuzzification Functions” on page 2-73

• “Steps for Specifying Custom Inference Functions” on page 2-73

Guidelines for Creating Custom AND and OR Functions

The custom AND and OR inference functions must operate column-wise on a
matrix, in the same way as the MATLAB functions max, min, or prod.

For a row or column matrix x, min(x) returns the minimum element.

x=[1 2 3 4];
min(x)
ans =

1

For a matrix x, min(x) returns a row vector containing the minimum element
from each column.

x=[1 2 3 4;5 6 7 8;9 10 11 12];
min(x)
ans =

1 2 3 4

For N-D arrays, min(x) operates along the first non-singleton dimension.

The function min(x,y) returns an array that is same size as x and y with the
minimum elements from x or y. Either of the input arguments can be a scalar.
Functions such as max, and prod operate in a similar manner.

2-71



2 Tutorial

In the toolbox, the AND implication methods perform an element by element
matrix operation, similar to the MATLAB function min(x,y).

a=[1 2; 3 4];
b=[2 2; 2 2];
min(a,b)
ans =

1 2
2 2

The OR implication methods perform an element by element matrix operation,
similar to the MATLAB function max(x,y).

Guidelines for Creating Custom Implication Functions
The custom implication functions must operate in the same way as
the MATLAB functions max, min, or prod and must be of the form y =
custom_imp(w,outputmf).

Here w is an nr-by-ns matrix and contains the weight of each rule. nr is the
number of rules, and ns is the number of parameters used to define the
output membership functions. w(:,j) = w(:,1) for all j, and w(i,1) is the firing
strength of the ith rule.

outputmf is an nr-by-ns matrix and contains the data for each output
membership function, where the ith row is the data for the ith output
membership function.

The following is an example of a custom implication function:

function impfun = custom_imp(w,outputmf)
impfun = min(w,outputmf);

Guidelines for Creating Custom Aggregation Functions
The custom aggregation functions must operate in the same way as
the MATLAB functions max, min, or prod and must be of the form y =
custom_agg(x).

x is an nv-by-nr matrix, which is the list of truncated output functions
returned by the implication method for each rule. nv is the number of output

2-72



Build Mamdani Systems Using Custom Functions

variables, and nr is the number of rules. The output of the aggregation
method is one fuzzy set for each output variable.

The following is an example of a custom aggregation function:

function aggfun = custom_agg(x)
aggfun=(sum(x)/2).^0.5;

Guidelines for Creating Custom Defuzzification Functions
The custom defuzzification functions must be of the form y =
custom_defuzz(xmf,ymf), where (xmf,ymf) is a finite set of membership
function values. xmf is the vector of values in the membership function input
range. ymf is the value of the membership function at xmf.

The following is an example of a custom defuzzification function:

function defuzzfun= custom_defuzz(xmf,ymf);
total_area=sum(ymf);
defuzzfun=sum(ymf*xmf)/total_area;

Steps for Specifying Custom Inference Functions
After you create and save a custom inference function, use the following steps
to specify the function in the fuzzy inference process:

2-73



2 Tutorial

1 In the lower-left panel of the FIS Editor, select Custom from the drop-down
menu corresponding to the inference method for which you want to specify
the custom function.

This action opens a dialog box where you specify the name of the custom
inference function.

2 In the Method name field, specify the name of the custom inference
function, and click OK.

2-74



Build Mamdani Systems Using Custom Functions

The custom function replaces the built-in function when building the fuzzy
inference system.

3 To specify custom functions for other inference methods, repeat steps
1 and 2.

2-75



2 Tutorial

Build Mamdani Systems (Code)

In this section...

“Tipping Problem from the Command Line” on page 2-76

“System Display Functions” on page 2-79

“Building a System from Scratch” on page 2-82

“FIS Evaluation” on page 2-85

“The FIS Structure” on page 2-86

Tipping Problem from the Command Line
The tipping problem is one of many Fuzzy Logic Toolbox examples of fuzzy
inference systems. The FIS is always cast as a MATLAB structure. To load
this system, type:

a = readfis('tipper.fis')

This command returns the following result:

a =
name: 'tipper'
type: 'mamdani'

andMethod: 'min'
orMethod: 'max'

defuzzMethod: 'centroid'
impMethod: 'min'
aggMethod: 'max'

input: [1x2 struct]
output: [1x1 struct]

rule: [1x3 struct]

The labels on the left of this listing represent the various components of
the MATLAB structure associated with tipper.fis. To access the various
components of this structure, type the component name after a at the
MATLAB prompt. For example:

a.type

2-76



Build Mamdani Systems (Code)

returns the following result:

ans =
mamdani

The function

getfis(a)

returns almost the same structure information that typing a, alone does:

Name = tipper
Type = mamdani
NumInputs = 2
InLabels =

service
food

NumOutputs = 1
OutLabels =

tip
NumRules = 3
AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

Some of these fields are not part of the structure a. Thus, you cannot get
information by typing a.Inlabels, but you can get it by typing

getfis(a,'Inlabels')

Similarly, you can obtain structure information using getfis in this manner.

getfis(a,'input',1)
getfis(a,'output',1)
getfis(a,'input',1,'mf',1)

The structure.field syntax also generates this information. For more
information on the syntax for MATLAB structures and cell arrays, see “Create
a Structure Array” and “Create a Cell Array” in the MATLAB documentation.

2-77



2 Tutorial

For example, type

a.input

or

a.input(1).mf(1)

The function getfis is loosely modeled on the Handle Graphics® function
get. The function setfis acts as the reciprocal to getfis. It allows you to
change any property of a FIS. For example, if you wanted to change the name
of this system, you could type

a = setfis(a,'name','gratuity');

However, because a is already a MATLAB structure, you can set this
information more simply by typing

a.name = 'gratuity';

Now the FIS structure a has been changed to reflect the new name. If you
want a little more insight into this FIS structure, try

showfis(a)

This syntax returns a printout listing all the information about a. This
function is intended more for debugging than anything else, but it shows all
the information recorded in the FIS structure

Because the variable, a, designates the fuzzy tipping system, you can display
any of the GUIs for the tipping system directly from the command line. Any of
the following functions will display the tipping system with the associated
GUI:

• fuzzy(a) displays the FIS Editor.

• mfedit(a) displays the Membership Function Editor.

• ruleedit(a) displays the Rule Editor.

• ruleview(a) displays the Rule Viewer.

• surfview(a) displays the Surface Viewer.

2-78



Build Mamdani Systems (Code)

If, in addition, a is a Sugeno-type FIS, then anfisedit(a) displays the
ANFIS Editor GUI.

When you open any of these GUIs, you can access any of the other GUIs using
the pull-down menu rather than the command line.

System Display Functions
There are three functions designed to give you a high-level view of your fuzzy
inference system from the command line: plotfis, plotmf, and gensurf.
The first of these displays the whole system as a block diagram much as it
would appear on the FIS Editor.

plotfis(a)

After closing any open MATLAB figures or GUI windows, the function plotmf
plots all the membership functions associated with a given variable as follows.

plotmf(a,'input',1)

2-79



2 Tutorial

returns the following plots

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

service

D
eg

re
e 

of
 m

em
be

rs
hi

p

poor good excellent

plotmf(a,'output',1)

2-80



Build Mamdani Systems (Code)

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tip

D
eg

re
e 

of
 m

em
be

rs
hi

p

cheap average generous

These plots appear in the Membership Function Editor GUI, or in an open
MATLAB figure, if plotmf is called while either of these is open.

Finally, the function gensurf plots any one or two inputs versus any one
output of a given system. The result is either a two-dimensional curve, or a
three-dimensional surface. When there are three or more inputs, gensurf
must be generated with all but two inputs fixed, as is described in gensurf.

gensurf(a)

2-81



2 Tutorial

0
2

4
6

8
10

0

2

4

6

8

10
5

10

15

20

25

servicefood

tip

Building a System from Scratch
You can build a fuzzy inference system using Fuzzy Logic Toolbox commands
as an alternative to the GUI tools. For example, to build the tipping system
entirely from the command line, you use the commands newfis, addvar,
addmf, and addrule.

Probably the most difficult part of this process is learning the shorthand that
the fuzzy inference systems use for building rules. Use the command line
function, addrule to do this.

Each variable, input, or output, has an index number, and each membership
function has an index number. The rules are built from statements such
as the following:

If input1 is MF1 or input2 is MF3, then output1 is MF2 (weight = 0.5)

This rule is turned into a structure according to the following logic. If there
are m inputs to a system and n outputs, then the first m vector entries of the
rule structure correspond to inputs 1 through m.

• The entry in column 1 is the index number for the membership function
associated with input 1.

2-82



Build Mamdani Systems (Code)

• The entry in column 2 is the index number for the membership function
associated with input 2, and so on.

• The next n columns work the same way for the outputs.

• Column m + n + 1 is the weight associated with that rule (typically 1) and
columnm + n + 2 specifies the connective used (where AND = 1 and OR = 2).

The structure associated with the preceding rule is

1 3 2 0.5 2

This sample code shows one way you can build the entire tipping system from
the command line, using the MATLAB structure syntax.

a=newfis('tipper');
a.input(1).name='service';
a.input(1).range=[0 10];
a.input(1).mf(1).name='poor';
a.input(1).mf(1).type='gaussmf';
a.input(1).mf(1).params=[1.5 0];
a.input(1).mf(2).name='good';
a.input(1).mf(2).type='gaussmf';
a.input(1).mf(2).params=[1.5 5];
a.input(1).mf(3).name='excellent';
a.input(1).mf(3).type='gaussmf';
a.input(1).mf(3).params=[1.5 10];
a.input(2).name='food';
a.input(2).range=[0 10];
a.input(2).mf(1).name='rancid';
a.input(2).mf(1).type='trapmf';
a.input(2).mf(1).params=[-2 0 1 3];
a.input(2).mf(2).name='delicious';
a.input(2).mf(2).type='trapmf';
a.input(2).mf(2).params=[7 9 10 12];
a.output(1).name='tip';
a.output(1).range=[0 30];
a.output(1).mf(1).name='cheap'
a.output(1).mf(1).type='trimf';
a.output(1).mf(1).params=[0 5 10];
a.output(1).mf(2).name='average';

2-83



2 Tutorial

a.output(1).mf(2).type='trimf';
a.output(1).mf(2).params=[10 15 20];
a.output(1).mf(3).name='generous';
a.output(1).mf(3).type='trimf';
a.output(1).mf(3).params=[20 25 30];
a.rule(1).antecedent=[1 1];
a.rule(1).consequent=[1];
a.rule(1).weight=1;
a.rule(1).connection=2;
a.rule(2).antecedent=[2 0];
a.rule(2).consequent=[2];
a.rule(2).weight=1;
a.rule(2).connection=1;
a.rule(3).antecedent=[3 2];
a.rule(3).consequent=[3];
a.rule(3).weight=1;
a.rule(3).connection=2

Tip You can also build the FIS structure using MATLAB workspace variables.
For example, to specify the range of the input, type:

r1= [0 10]
a.input(1).range = r1;

Alternatively, you can build the entire tipping system from the command
line using Fuzzy Logic Toolbox commands. These commands are in the
mktipper.m file.

a=newfis('tipper');
a=addvar(a,'input','service',[0 10]);
a=addmf(a,'input',1,'poor','gaussmf',[1.5 0]);
a=addmf(a,'input',1,'good','gaussmf',[1.5 5]);
a=addmf(a,'input',1,'excellent','gaussmf',[1.5 10]);
a=addvar(a,'input','food',[0 10]);
a=addmf(a,'input',2,'rancid','trapmf',[-2 0 1 3]);
a=addmf(a,'input',2,'delicious','trapmf',[7 9 10 12]);
a=addvar(a,'output','tip',[0 30]);

2-84



Build Mamdani Systems (Code)

a=addmf(a,'output',1,'cheap','trimf',[0 5 10]);
a=addmf(a,'output',1,'average','trimf',[10 15 20]);
a=addmf(a,'output',1,'generous','trimf',[20 25 30]);
ruleList=[ ...
1 1 1 1 2
2 0 2 1 1
3 2 3 1 2 ];
a=addrule(a,ruleList);

Specifying Custom Membership and Inference Functions
You can create custom membership and inference functions as described in
“Specifying Custom Membership Functions” on page 2-64, and “Specifying
Custom Inference Functions” on page 2-70, and specify them for building
fuzzy inference systems at the command line.

To include a custom membership function, specify the name of the custom
membership function, as shown in the following example:

a=addmf(a,'input',1,'customMF1','custmf1',[0 1 2 4 6 8 9 10]);

To include a custom inference function, specify the name of the custom
inference function, as shown in the following example:

a.defuzzMethod='customdefuzz';

FIS Evaluation
To evaluate the output of a fuzzy system for a given input, use the function
evalfis. For example, the following script evaluates tipper at the input,
[1 2].

a = readfis('tipper');
evalfis([1 2], a)
ans =

5.5586

This function can also be used for multiple collections of inputs, because
different input vectors are represented in different parts of the input
structure.

2-85



2 Tutorial

evalfis([3 5; 2 7], a)
ans =

12.2184
7.7885

The FIS Structure
The FIS structure is the MATLAB object that contains all the fuzzy inference
system information. This structure is stored inside each GUI tool. Access
functions such as getfis and setfis make it easy to examine this structure.

All the information for a given fuzzy inference system is contained in the FIS
structure, including variable names, membership function definitions, and
so on. This structure can itself be thought of as a hierarchy of structures,
as shown in the following diagram.

You can generate a listing of information on the FIS using the showfis
command, as shown in the following code sample:

showfis(a)
1. Name tipper
2. Type mamdani

2-86



Build Mamdani Systems (Code)

3. Inputs/Outputs [ 2 1 ]
4. NumInputMFs [ 3 2 ]
5. NumOutputMFs 3
6. NumRules 3
7. AndMethod min
8. OrMethod max
9. ImpMethod min
10. AggMethod max
11. DefuzzMethod centroid
12. InLabels service
13. food
14. OutLabels tip
15. InRange [ 0 10 ]
16. [ 0 10 ]
17. OutRange [ 0 30 ]
18. InMFLabels poor
19. good
20. excellent
21. rancid
22. delicious
23. OutMFLabels cheap
24. average
25. generous
26. InMFTypes gaussmf
27. gaussmf
28. gaussmf
29. trapmf
30. trapmf
31. OutMFTypes trimf
32. trimf
33. trimf
34. InMFParams [ 1.5 0 0 0 ]
35. [ 1.5 5 0 0 ]
36. [ 1.5 10 0 0 ]
37. [ 0 0 1 3 ]
38. [ 7 9 10 10 ]
39. OutMFParams [ 0 5 10 0 ]
40. [ 10 15 20 0 ]
41. [ 20 25 30 0 ]
42. Rule Antecedent [ 1 1 ]

2-87



2 Tutorial

43. [ 2 0 ]
44. [ 3 2 ]
42. Rule Consequent 1
43. 2
44. 3
42. Rule Weight 1
43. 1
44. 1
42. Rule Connection 2
43. 1
44. 2

The list of command-line functions associated with FIS construction includes
getfis, setfis, showfis, addvar, addmf, addrule, rmvar, and rmmf.

Saving FIS Files
A specialized text file format is used for saving fuzzy inference systems. The
functions readfis and writefis are used for reading and writing these files.

If you prefer, you can modify the FIS by editing its .fis text file rather
than using any of the GUIs. You should be aware, however, that changing
one entry may oblige you to change another. For example, if you delete a
membership function using this method, you also need to make certain that
any rules requiring this membership function are also deleted.

The rules appear in indexed format in a .fis text file. The following sample
shows the file tipper.fis.

[System]
Name='tipper'
Type='mamdani'
NumInputs=2
NumOutputs=1
NumRules=3
AndMethod='min'
OrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='centroid'

2-88



Build Mamdani Systems (Code)

[Input1]
Name='service'
Range=[0 10]
NumMFs=3
MF1='poor':'gaussmf',[1.5 0]
MF2='good':'gaussmf',[1.5 5]
MF3='excellent':'gaussmf',[1.5 10]

[Input2]
Name='food'
Range=[0 10]
NumMFs=2
MF1='rancid':'trapmf',[0 0 1 3]
MF2='delicious':'trapmf',[7 9 10 10]

[Output1]
Name='tip'
Range=[0 30]
NumMFs=3
MF1='cheap':'trimf',[0 5 10]
MF2='average':'trimf',[10 15 20]
MF3='generous':'trimf',[20 25 30]

[Rules]
1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

2-89



2 Tutorial

Simulate Fuzzy Inference Systems in Simulink
Fuzzy Logic Toolbox software is designed to work in Simulink environment.
After you have created your fuzzy system using the GUI tools or some other
method, you are ready to embed your system directly into a simulation.

Picture a tank with a pipe flowing in and a pipe flowing out. You can change
the valve controlling the water that flows in, but the outflow rate depends on
the diameter of the outflow pipe (which is constant) and the pressure in the
tank (which varies with the water level). The system has some very nonlinear
characteristics.

A controller for the water level in the tank needs to know the current water
level and it needs to be able to set the valve. Your controller’s input is the
water level error (desired water level minus actual water level), and its output
is the rate at which the valve is opening or closing. A first pass at writing a
fuzzy controller for this system might be the following:

1. If (level is okay) then (valve is no_change) (1)
2. If (level is low) then (valve is open_fast) (1)
3. If (level is high) then (valve is close_fast) (1)

You can take fuzzy systems directly into Simulink and test them out in a
simulation environment. A Simulink block diagram for this system is shown
in the following figure. It contains a Simulink block called the Fuzzy Logic
Controller block. The Simulink block diagram for this system is sltank.
Typing

sltank

2-90



Simulate Fuzzy Inference Systems in Simulink®

at the command line, causes the system to appear. At the same time, the file
tank.fis is loaded into the FIS structure tank.

Some experimentation shows that three rules are not sufficient, because the
water level tends to oscillate around the desired level. See the following plot:

2-91



2 Tutorial

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (second)

You need to add another input, the water level’s rate of change, to slow down
the valve movement when it gets close to the right level.

4. If (level is good) and (rate is negative), then (valve is close_slow) (1)
5. If (level is good) and (rate is positive), then (valve is open_slow) (1)

sltank is built with these five rules. With all five rules in operations, you can
examine the step response by simulating this system. You do so by clicking
Simulation > Run, and clicking the Comparison block. The result looks
similar to the following plot.

2-92



Simulate Fuzzy Inference Systems in Simulink®

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (second)

One interesting feature of the water tank system is that the tank empties
much more slowly than it fills up because of the specific value of the outflow
diameter pipe. You can deal with this by setting the close_slow valve
membership function to be slightly different from the open_slow setting.
A PID controller does not have this capability. The valve command versus
the water level change rate (depicted as water) and the relative water level
change (depicted as level) surface looks like this. If you look closely, you can
see a slight asymmetry to the plot.

2-93



2 Tutorial

−1

−0.5

0

0.5

1

−0.1
−0.05

0
0.05

0.1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

level
water

va
lv

e

Because MATLAB software supports so many tools such as Control System
Toolbox, and Neural Network Toolbox software, you can, for example, easily
make a comparison of a fuzzy controller versus a linear controller or a neural
network controller.

For a example of how the Rule Viewer can be used to interact with a Fuzzy
Logic Toolbox block in a Simulink model, type

sltankrule

This example contains a block called the Fuzzy Controller With Rule Viewer
block.

In this example, the Rule Viewer opens when you start the simulation. This
Rule Viewer provides an animation of how the rules are fired during the water
tank simulation. The windows that open when you simulate sltankrule
are depicted as follows.

2-94



Simulate Fuzzy Inference Systems in Simulink®

The Rule Viewer that opens during the simulation can be used to access the
Membership Function Editor, the Rule Editor, or any of the other GUIs, (see
“The Membership Function Editor” on page 2-43, or “The Rule Editor” on page
2-53, for more information).

For example, you may want to open the Rule Editor to change one of your
rules. To do so, select Rules under the Edit menu of the open Rule Viewer.
Now, you can view or edit the rules for this Simulink model.

2-95



2 Tutorial

If you stop the simulation prior to selecting any of these editors, you should
change your FIS. Remember to save any changes you make to your FIS to the
workspace before you restart the simulation.

2-96



Build Your Own Fuzzy Simulink® Models

Build Your Own Fuzzy Simulink Models
To build your own Simulink systems that use fuzzy logic, simply copy the
Fuzzy Logic Controller block out of sltank (or any of the other Simulink
systems available with the toolbox) and place it in your own block diagram.
You can also find the Fuzzy Logic Controller blocks in the Fuzzy Logic Toolbox
library. You can open the library by selecting Fuzzy Logic Toolbox in the
Simulink Library Browser window, or by typing

fuzblock

at the MATLAB prompt.

The following library appears.

The Fuzzy Logic Toolbox library contains the Fuzzy Logic Controller
and Fuzzy Logic Controller with Rule Viewer blocks. It also includes a
Membership Functions sublibrary that contains Simulink blocks for the
built-in membership functions.

2-97



2 Tutorial

To add a block from the library, drag the block into the Simulink model
window. You can get help on a specific block by clicking Help.

About the Fuzzy Logic Controller Block
For most fuzzy inference systems, the Fuzzy Logic Controller block
automatically generates a hierarchical block diagram representation of your
FIS. This automatic model generation ability is called the Fuzzy Wizard.
The block diagram representation only uses built-in Simulink blocks and,
therefore, allows for efficient code generation.

The Fuzzy Wizard cannot handle FIS with custom membership functions or
with AND, OR, IMP, and AGG functions outside of the following list:

• orMethod: max

• andMethod: min,prod

• impMethod: min,prod

• aggMethod: max

In these cases, the Fuzzy Logic Controller block uses the S-function sffis
to simulate the FIS.

About the Fuzzy Logic Controller with Ruleviewer
Block
The Fuzzy Logic Controller with Rule Viewer block is an extension of the
Fuzzy Logic Controller block. It allows you to visualize how rules are
fired during simulation. Right-click on the Fuzzy Controller With Rule
Viewer block, and selectMask > Look Under Mask to view the underlying
subsystem.

2-98



Build Your Own Fuzzy Simulink® Models

Initializing Fuzzy Logic Controller Blocks
You can initialize a Fuzzy Logic Controller or Fuzzy Logic Controller with
Ruleviewer block using a fuzzy inference system saved as a .fis file or a
structure. To learn how to save your fuzzy inference system, see “Importing
and Exporting from the GUI Tools” on page 2-61.

To initialize a Fuzzy Logic Controller block, use the following steps:

1 Double-click the block to open the Function Block Parameters: Fuzzy Logic
Controller dialog box.

2 In FIS file or structure, enter the name of the structure variable or the
name of the .fis file.

2-99



2 Tutorial

If you are using the Fuzzy Logic Controller with Ruleviewer block, enter the
name of the structure variable or the name of the .fis file in FIS matrix.

Note When entering the name of the .fis file in the blocks, you must
enclose it in single quotes.

Example: Cart and Pole Simulation
The cart and pole simulation is an example of a FIS model auto-generated
by the Fuzzy Logic Controller block.

Type

slcp

at the MATLAB prompt to open the simulation.

This model appears.

2-100



Build Your Own Fuzzy Simulink® Models

Right-click on the Fuzzy Logic Controller block, and select Mask > Look
Under Mask from the right-click menu. The following subsystem opens.

Follow the same procedure to look under the mask of the FIS Wizard
subsystem to see the implementation of your FIS. The Fuzzy Logic Controller
block uses built-in Simulink blocks to implement your FIS. Although the

2-101



2 Tutorial

models can grow complex, this representation is better suited than the
S-function sffis for efficient code generation.

2-102



What Is Sugeno-Type Fuzzy Inference?

What Is Sugeno-Type Fuzzy Inference?
This topic discusses the so-called Sugeno, or Takagi-Sugeno-Kang, method
of fuzzy inference. Introduced in 1985 [16], it is similar to the Mamdani
method in many respects. The first two parts of the fuzzy inference process,
fuzzifying the inputs and applying the fuzzy operator, are exactly the same.
The main difference between Mamdani and Sugeno is that the Sugeno output
membership functions are either linear or constant.

A typical rule in a Sugeno fuzzy model has the form

If Input 1 = x and Input 2 = y, then Output is z = ax + by + c

For a zero-order Sugeno model, the output level z is a constant (a=b =0).

The output level zi of each rule is weighted by the firing strength wi of the
rule. For example, for an AND rule with Input 1 = x and Input 2 = y, the
firing strength is

w AndMethod F x F yi = ( ( ), ( ))1 2

where F1,2 (.) are the membership functions for Inputs 1 and 2.

The final output of the system is the weighted average of all rule outputs,
computed as

Final Output = =
w z

w

i i
i

N

i
i

N
1

1

∑

∑
=

where N is the number of rules.

2-103



2 Tutorial

A Sugeno rule operates as shown in the following diagram.

��������
�����
�����	��
���� �
���

�������	���	����
��������
	
��	��	��

�(����������

���� ����

2�����!�3
!���

�4 �����	

��� ��

2 
���3

����

2!�������3

+���*/*0

����	�5 ��	��	

��������	

�����������
����������

���*/*�2�13

���)���*/*1

����	��

�� ���)���*�
����� +���*�
������� ���*���	���������

�� ���)���*�
�(��� ���� ���*���)���(�

�� ���)���*�
��&������� +���*�
��������
� ������ ���*��(�����
�

��

��

��

�

�

��

�

�

��

��

��

The preceding figure shows the fuzzy tipping model developed in previous
sections of this manual adapted for use as a Sugeno system. Fortunately, it is
frequently the case that singleton output functions are completely sufficient
for the needs of a given problem. As an example, the system tippersg.fis is

2-104



What Is Sugeno-Type Fuzzy Inference?

the Sugeno-type representation of the now-familiar tipping model. If you load
the system and plot its output surface, you will see that it is almost the same
as the Mamdani system you have previously seen.

a = readfis('tippersg');
gensurf(a)

0
2

4
6

8
10

0

2

4

6

8

10

10

15

20

servicefood

tip

The easiest way to visualize first-order Sugeno systems is to think of each rule
as defining the location of a moving singleton. That is, the singleton output
spikes can move around in a linear fashion in the output space, depending
on what the input is. This also tends to make the system notation very
compact and efficient. Higher-order Sugeno fuzzy models are possible, but
they introduce significant complexity with little obvious merit. Sugeno fuzzy
models whose output membership functions are greater than first order are
not supported by Fuzzy Logic Toolbox software.

Because of the linear dependence of each rule on the input variables, the
Sugeno method is ideal for acting as an interpolating supervisor of multiple
linear controllers that are to be applied, respectively, to different operating
conditions of a dynamic nonlinear system. For example, the performance

2-105



2 Tutorial

of an aircraft may change dramatically with altitude and Mach number.
Linear controllers, though easy to compute and well suited to any given
flight condition, must be updated regularly and smoothly to keep up with
the changing state of the flight vehicle. A Sugeno fuzzy inference system is
extremely well suited to the task of smoothly interpolating the linear gains
that would be applied across the input space; it is a natural and efficient
gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear
systems by interpolating between multiple linear models.

To see a specific example of a system with linear output membership
functions, consider the one input one output system stored in sugeno1.fis.

fismat = readfis('sugeno1');
getfis(fismat,'output',1)

This syntax returns:

Name = output
NumMFs = 2
MFLabels =
line1
line2

Range = [0 1]

The output variable has two membership functions.

getfis(fismat,'output',1,'mf',1)

This syntax returns:

Name = line1
Type = linear
Params =
-1 -1

getfis(fismat,'output',1,'mf',2)

This syntax returns:

2-106



What Is Sugeno-Type Fuzzy Inference?

Name = line2
Type = linear
Params =
1 -1

Further, these membership functions are linear functions of the input
variable. The membership function line1 is defined by the equation

output input= − × + −( ) ( )1 1

and the membership function line2 is defined by the equation

output input= × + −( ) ( )1 1

The input membership functions and rules define which of these output
functions are expressed and when:

showrule(fismat)
ans =
1. If (input is low) then (output is line1) (1)
2. If (input is high) then (output is line2) (1)

The function plotmf shows us that the membership function low generally
refers to input values less than zero, while high refers to values greater
than zero. The function gensurf shows how the overall fuzzy system output
switches smoothly from the line called line1 to the line called line2.

subplot(2,1,1), plotmf(fismat,'input',1)
subplot(2,1,2),gensurf(fismat)

2-107



2 Tutorial

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

input

D
eg

re
e 

of
 b

el
ie

f

low high

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

input

ou
tp

ut

As this example shows, Sugeno-type system gives you the freedom to
incorporate linear systems into your fuzzy systems. By extension, you could
build a fuzzy system that switches between several optimal linear controllers
as a highly nonlinear system moves around in its operating space.

See Also readfis | gensurf

Concepts • “Comparison of Sugeno and Mamdani Systems” on page 2-109
• “What Is Mamdani-Type Fuzzy Inference?” on page 2-34

2-108



Comparison of Sugeno and Mamdani Systems

Comparison of Sugeno and Mamdani Systems
Because it is a more compact and computationally efficient representation
than a Mamdani system, the Sugeno system lends itself to the use of adaptive
techniques for constructing fuzzy models. These adaptive techniques can be
used to customize the membership functions so that the fuzzy system best
models the data.

Note You can use the MATLAB command-line function mam2sug to convert a
Mamdani system into a Sugeno system (not necessarily with a single output)
with constant output membership functions. It uses the centroid associated
with all of the output membership functions of the Mamdani system.

The following are some final considerations about the two different methods.

Advantages of the Sugeno Method

• It is computationally efficient.

• It works well with linear techniques (e.g., PID control).

• It works well with optimization and adaptive techniques.

• It has guaranteed continuity of the output surface.

• It is well suited to mathematical analysis.

Advantages of the Mamdani Method

• It is intuitive.

• It has widespread acceptance.

• It is well suited to human input.

2-109



2 Tutorial

anfis and the ANFIS Editor GUI

In this section...

“When to Use Neuro-Adaptive Learning” on page 2-110

“Model Learning and Inference Through ANFIS” on page 2-111

“Train Adaptive Neuro-Fuzzy Inference Systems (GUI)” on page 2-114

“Test Data Against Trained System (GUI)” on page 2-118

“Predict Chaotic Time-Series (Code)” on page 2-132

“Save Training Error Data to MATLAB Workspace” on page 2-138

“Comparison of anfis and ANFIS Editor Functionality” on page 2-145

When to Use Neuro-Adaptive Learning
The basic structure of Mamdani fuzzy inference system is a model that maps
input characteristics to input membership functions, input membership
function to rules, rules to a set of output characteristics, output characteristics
to output membership functions, and the output membership function to
a single-valued output or a decision associated with the output. You used
only fixed membership functions that were chosen arbitrarily. You applied
fuzzy inference to only modeling systems whose rule structure is essentially
predetermined by the user’s interpretation of the characteristics of the
variables in the model.

anfis and the ANFIS Editor GUI apply fuzzy inference techniques to data
modeling. As you have seen from the other fuzzy inference GUIs, the shape
of the membership functions depends on parameters, and changing these
parameters change the shape of the membership function. Instead of just
looking at the data to choose the membership function parameters, you choose
membership function parameters automatically using these Fuzzy Logic
Toolbox applications.

Suppose you want to apply fuzzy inference to a system for which you already
have a collection of input/output data that you would like to use for modeling,
model-following, or some similar scenario. You do not necessarily have a
predetermined model structure based on characteristics of variables in your
system.

2-110



anfis and the ANFIS Editor GUI

In some modeling situations, you cannot discern what the membership
functions should look like simply from looking at data. Rather than choosing
the parameters associated with a given membership function arbitrarily,
these parameters could be chosen so as to tailor the membership functions
to the input/output data in order to account for these types of variations
in the data values. In such cases, you can use the Fuzzy Logic Toolbox
neuro-adaptive learning techniques incorporated in the anfis command.

Model Learning and Inference Through ANFIS
The neuro-adaptive learning method works similarly to that of neural
networks. Neuro-adaptive learning techniques provide a method for the
fuzzy modeling procedure to learn information about a data set. Fuzzy Logic
Toolbox software computes the membership function parameters that best
allow the associated fuzzy inference system to track the given input/output
data. The Fuzzy Logic Toolbox function that accomplishes this membership
function parameter adjustment is called anfis. The anfis function can be
accessed either from the command line or through the ANFIS Editor GUI.
Because the functionality of the command line function anfis and the ANFIS
Editor GUI is similar, they are used somewhat interchangeably in this
discussion, except when specifically describing the GUI.

What Is ANFIS?
The acronym ANFIS derives its name from adaptive neuro-fuzzy inference
system. Using a given input/output data set, the toolbox function anfis
constructs a fuzzy inference system (FIS) whose membership function
parameters are tuned (adjusted) using either a backpropagation algorithm
alone or in combination with a least squares type of method. This adjustment
allows your fuzzy systems to learn from the data they are modeling.

FIS Structure and Parameter Adjustment
A network-type structure similar to that of a neural network, which maps
inputs through input membership functions and associated parameters, and
then through output membership functions and associated parameters to
outputs, can be used to interpret the input/output map.

The parameters associated with the membership functions changes through
the learning process. The computation of these parameters (or their

2-111



2 Tutorial

adjustment) is facilitated by a gradient vector. This gradient vector provides a
measure of how well the fuzzy inference system is modeling the input/output
data for a given set of parameters. When the gradient vector is obtained,
any of several optimization routines can be applied in order to adjust the
parameters to reduce some error measure. This error measure is usually
defined by the sum of the squared difference between actual and desired
outputs. anfis uses either back propagation or a combination of least
squares estimation and backpropagation for membership function parameter
estimation.

Know Your Data
The modeling approach used by anfis is similar to many system identification
techniques. First, you hypothesize a parameterized model structure (relating
inputs to membership functions to rules to outputs to membership functions,
and so on). Next, you collect input/output data in a form that will be usable by
anfis for training. You can then use anfis to train the FIS model to emulate
the training data presented to it by modifying the membership function
parameters according to a chosen error criterion.

In general, this type of modeling works well if the training data presented
to anfis for training (estimating) membership function parameters is fully
representative of the features of the data that the trained FIS is intended to
model. In some cases however, data is collected using noisy measurements,
and the training data cannot be representative of all the features of the data
that will be presented to the model. In such situations, model validation is
helpful.

Model Validation Using Testing and Checking Data Sets. Model
validation is the process by which the input vectors from input/output data
sets on which the FIS was not trained, are presented to the trained FIS
model, to see how well the FIS model predicts the corresponding data set
output values.

One problem with model validation for models constructed using adaptive
techniques is selecting a data set that is both representative of the data
the trained model is intended to emulate, yet sufficiently distinct from the
training data set so as not to render the validation process trivial.

2-112



anfis and the ANFIS Editor GUI

If you have collected a large amount of data, hopefully this data contains all
the necessary representative features, so the process of selecting a data set
for checking or testing purposes is made easier. However, if you expect to be
presenting noisy measurements to your model, it is possible the training data
set does not include all of the representative features you want to model.

The testing data set lets you check the generalization capability of the
resulting fuzzy inference system. The idea behind using a checking data set
for model validation is that after a certain point in the training, the model
begins overfitting the training data set. In principle, the model error for the
checking data set tends to decrease as the training takes place up to the
point that overfitting begins, and then the model error for the checking data
suddenly increases. Overfitting is accounted for by testing the FIS trained on
the training data against the checking data, and choosing the membership
function parameters to be those associated with the minimum checking error
if these errors indicate model overfitting.

Usually, these training and checking data sets are collected based on
observations of the target system and are then stored in separate files.

In the first example, two similar data sets are used for checking and training,
but the checking data set is corrupted by a small amount of noise. This
example illustrates of the use of the ANFIS Editor GUI with checking data
to reduce the effect of model overfitting. In the second example, a training
data set that is presented to anfis is sufficiently different than the applied
checking data set. By examining the checking error sequence over the
training period, it is clear that the checking data set is not good for model
validation purposes. This example illustrates the use of the ANFIS Editor
GUI to compare data sets.

References

[1] Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm,” Proc. of the Ninth National Conf. on Artificial
Intelligence (AAAI-91), pp. 762-767, July 1991.

[2] Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23,
No. 3, pp. 665-685, May 1993.

2-113



2 Tutorial

[3] Jang, J.-S. R. and N. Gulley, “Gain scheduling based fuzzy controller
design,” Proc. of the International Joint Conference of the North American
Fuzzy Information Processing Society Biannual Conference, the Industrial
Fuzzy Control and Intelligent Systems Conference, and the NASA Joint
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio,
Texas, Dec. 1994.

[4] Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,
Proceedings of the IEEE, March 1995.

[5] Jang, J.-S. R. and C.-T. Sun, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice
Hall, 1997.

[6] Wang, L.-X., Adaptive fuzzy systems and control: design and stability
analysis, Prentice Hall, 1994.

[7] Widrow, B. and D. Stearns, Adaptive Signal Processing, Prentice Hall,
1985.

Train Adaptive Neuro-Fuzzy Inference Systems (GUI)
You can create, train, and test Sugeno-type fuzzy systems using the ANFIS
Editor GUI.

To start the GUI, type the following command at the MATLAB prompt:

anfisedit

The ANFIS Editor GUI window shown in the following figure includes four
distinct areas to support a typical workflow. The GUI lets you perform the
following tasks:

1 “Loading, Plotting, and Clearing the Data” on page 2-115

2 “Generating or Loading the Initial FIS Structure” on page 2-116

3 “Training the FIS” on page 2-116

4 “Validating the Trained FIS” on page 2-117

2-114



anfis and the ANFIS Editor GUI

Access the online help topics by clicking Help in the ANFIS Editor.

Loading, Plotting, and Clearing the Data
To train a FIS, you must begin by loading a Training data set that contains
the desired input/output data of the system to be modeled. Any data set you
load must be an array with the data arranged as column vectors, and the
output data in the last column.

You can also load Testing and Checking data in the GUI. For more
information on testing and checking data sets, see “Model Validation Using
Testing and Checking Data Sets” on page 2-112.

To load a data set using the Load data portion of the GUI:

2-115



2 Tutorial

1 Specify the data Type.

2 Select the data from a file or the MATLAB worksp.

3 Click Load Data.

After you load the data, it displays in the plot. The training, testing and
checking data are annotated in blue as circles, diamonds, and pluses
respectively.

To clear a specific data set from the GUI:

1 In the Load data area, select the data Type.

2 Click Clear Data.

This action also removes the corresponding data from the plot.

Generating or Loading the Initial FIS Structure
Before you start the FIS training, you must specify an initial FIS model
structure. To specify the model structure, perform one of the following tasks:

• Load a previously saved Sugeno-type FIS structure from a file or the
MATLAB workspace.

• Generate the initial FIS model by choosing one of the following partitioning
techniques:

- Grid partition— Generates a single-output Sugeno-type FIS by using
grid partitioning on the data.

- Sub. clustering — Generates an initial model for ANFIS training by
first applying subtractive clustering on the data.

To view a graphical representation of the initial FIS model structure, click
Structure.

Training the FIS
After loading the training data and generating the initial FIS structure, you
can start training the FIS.

2-116



anfis and the ANFIS Editor GUI

Tip If you want to save the training error generated during ANFIS training
to the MATLAB workspace, see “Save Training Error Data to MATLAB
Workspace” on page 2-138.

The following steps show you how to train the FIS.

1 In Optim. Method, choose hybrid or backpropaga as the optimization
method.

The optimization methods train the membership function parameters to
emulate the training data.

Note The hybrid optimization method is a combination of least-squares
and backpropagation gradient descent method.

2 Enter the number of training Epochs and the training Error Tolerance
to set the stopping criteria for training.

The training process stops whenever the maximum epoch number is
reached or the training error goal is achieved.

3 Click Train Now to train the FIS.

This action adjusts the membership function parameters and displays the
error plots.

Examine the error plots to determine overfitting during the training. If
you notice the checking error increasing over iterations, it indicates model
overfitting. For examples on model overfitting, see “Checking Data Helps
Model Validation” on page 2-118 and “Checking Data Does Not Validate
Model” on page 2-128.

Validating the Trained FIS
After the FIS is trained, validate the model using a Testing or Checking
data that differs from the one you used to train the FIS. To validate the
trained FIS:

2-117



2 Tutorial

1 Select the validation data set and click Load Data.

2 Click Test Now.

This action plots the test data against the FIS output (shown in red) in
the plot.

For more information on the use of testing data and checking data for model
validation, see “Model Validation Using Testing and Checking Data Sets” on
page 2-112.

Test Data Against Trained System (GUI)

• “Checking Data Helps Model Validation” on page 2-118

• “Checking Data Does Not Validate Model” on page 2-128

Checking Data Helps Model Validation
In this section, we look at an example that loads similar training and checking
data sets. The checking data set is corrupted by noise.

1 “Loading Data” on page 2-118

2 “Initializing and Generating Your FIS” on page 2-121

3 “Viewing Your FIS Structure” on page 2-124

4 “ANFIS Training” on page 2-125

5 “Testing Your Data Against the Trained FIS” on page 2-126

Loading Data. To work both of the following examples, you load the training
data sets (fuzex1trnData and fuzex2trnData) and the checking data sets
(fuzex1chkData and fuzex2chkData), into the ANFIS Editor GUI from the
workspace. You may also substitute your own data sets.

To load the data sets from the workspace into the ANFIS Editor GUI:

1 Type the following commands at the MATLAB command line to load the
data sets from the folder fuzzydemos into the MATLAB workspace:

2-118



anfis and the ANFIS Editor GUI

load fuzex1trnData.dat
load fuzex2trnData.dat
load fuzex1chkData.dat
load fuzex2chkData.dat

2 Open the ANFIS Editor GUI by typing anfisedit in the MATLAB
command line.

3 To load the training data set from the workspace:

a In the Load data portion of the GUI, select the following options:

• Type: Training

• From: worksp.

b Click Load Data to open the Load from workspace dialog box.

2-119



2 Tutorial

c Type fuzex1trnData as shown in the following figure, and click OK.

The training data set is used to train a fuzzy system by adjusting the
membership function parameters that best model this data, and appears
in the plot in the center of the GUI as a set of circles.

The horizontal axis is marked data set index. This index indicates the
row from which that input data value was obtained (whether or not
the input is a vector or a scalar).

4 To load the checking data set from the workspace:

a In the Load data portion of the GUI, select Checking in the Type
column.

b Click Load Data to open the Load from workspace dialog box.

2-120



anfis and the ANFIS Editor GUI

c Type fuzex1chkData as the variable name and click OK.

The checking data appears in the GUI plot as pluses superimposed on
the training data.

The next step is to specify an initial fuzzy inference system for anfis
to train.

Initializing and Generating Your FIS. You can either initialize the FIS
parameters to your own preference, or if you do not have any preference for
how you want the initial membership functions to be parameterized, you
can let anfis initialize the parameters for you, as described in the following
sections:

• “Automatic FIS Structure Generation” on page 2-122

2-121



2 Tutorial

• “Specifying Your Own Membership Functions for ANFIS” on page 2-123

Automatic FIS Structure Generation. To initialize your FIS using anfis:

1 Choose Grid partition, the default partitioning method. The two partition
methods, grid partitioning and subtractive clustering, are described later in
“Fuzzy C-Means Clustering” on page 2-153, and in “Subtractive Clustering”
on page 2-158.

2 Click on the Generate FIS button. Clicking this button displays a menu
from which you can choose the number of membership functions,MFs, and
the type of input and output membership functions. There are only two
choices for the output membership function: constant and linear. This
limitation of output membership function choices is because anfis only
operates on Sugeno-type systems.

3 Fill in the entries as shown in the following figure, and click OK.

2-122



anfis and the ANFIS Editor GUI

You can also implement this FIS generation from the command line using
the command genfis1 (for grid partitioning) or genfis2 (for subtractive
clustering).

Specifying Your Own Membership Functions for ANFIS. You can choose
your own preferred membership functions with specific parameters to be used
by anfis as an initial FIS for training.

To define your own FIS structure and parameters:

1 Open theMembership functions menu item from the Edit menu.

2 Add your desired membership functions (the custom membership option
will be disabled for anfis). The output membership functions must either
be all constant or all linear. For carrying out this and the following step,
see “The FIS Editor” on page 2-38 and “The Membership Function Editor”
on page 2-43.

3 Select the Rules menu item in the Edit menu, and use the Rule Editor to
generate the rules (see “The Rule Editor” on page 2-53).

4 Select the FIS Properties menu item from the Edit menu. Name your
FIS, and save it to either the workspace or to file.

5 Click the Close button to return to the ANFIS Editor GUI to train the FIS.

6 To load an existing FIS for ANFIS initialization, in the Generate FIS
portion of the GUI, click Load from worksp. or Load from file. You load
your FIS from a file if you have saved a FIS previously that you would like
to use. Otherwise you load your FIS from the workspace.

2-123



2 Tutorial

Viewing Your FIS Structure. After you generate the FIS, you can view the
model structure by clicking the Structure button in the middle of the right
side of the GUI. A new GUI appears, as follows.

The branches in this graph are color coded. Color coding of branches
characterize the rules and indicate whether or not and, not, or or are used in
the rules. The input is represented by the left-most node and the output by
the right-most node. The node represents a normalization factor for the rules.
Clicking on the nodes indicates information about the structure.

You can view the membership functions or the rules by opening either the
Membership Function Editor, or the Rule Editor from the Edit menu.

2-124



anfis and the ANFIS Editor GUI

ANFIS Training. The two anfis parameter optimization method options
available for FIS training are hybrid (the default, mixed least squares and
backpropagation) and backpropa (backpropagation). Error Tolerance is
used to create a training stopping criterion, which is related to the error
size. The training will stop after the training data error remains within this
tolerance. This is best left set to 0 if you are unsure how your training error
may behave.

Note If you want to save the training error data generated during ANFIS
training to the MATLAB workspace, you must train the FIS at the command
line. For an example, “Save Training Error Data to MATLAB Workspace” on
page 2-138.

To start the training:

1 Leave the optimization method at hybrid.

2 Set the number of training epochs to 40, under the Epochs listing on the
GUI (the default value is 3).

2-125



2 Tutorial

3 Select Train Now.

The following window appears on your screen.

The plot shows the checking error as ♦ ♦ on the top . The training error
appears as * * on the bottom. The checking error decreases up to a certain
point in the training, and then it increases. This increase represents the
point of model overfitting. anfis chooses the model parameters associated
with the minimum checking error (just prior to this jump point). This
example shows why the checking data option of anfis is useful.

Testing Your Data Against the Trained FIS. To test your FIS against the
checking data, select Checking data in the Test FIS portion of the ANFIS
Editor GUI, and click Test Now. When you test the checking data against
the FIS, it looks satisfactory.

2-126



anfis and the ANFIS Editor GUI

Loading More Data with anfis. If you load data into anfis after clearing
previously loaded data, you must make sure that the newly loaded data sets
have the same number of inputs as the previously loaded ones did. Otherwise,
you must start a new anfisedit session from the command line.

Checking Data Option and Clearing Data. If you do not want to use the
checking data option of anfis, then do not load any checking data before you
train the FIS. If you decide to retrain your FIS with no checking data, you
can unload the checking data in one of two ways:

• Select the Checking option button in the Load data portion of the ANFIS
Editor GUI, and then click Clear Data to unload the checking data.

2-127



2 Tutorial

• Close the ANFIS Editor GUI, and go to the MATLAB command line, and
retype anfisedit. In this case you must reload the training data.

After clearing the data, you must regenerate your FIS. After the FIS is
generated, you can use your first training experience to decide on the number
of training epochs you want for the second round of training.

Checking Data Does Not Validate Model
This example examines what happens when the training and checking data
sets are sufficiently different. To see how the ANFIS Editor GUI can be used
to learn something about data sets and how they differ:

1 Clear the ANFIS Editor GUI:

• Clear both the training and checking data.

• (optional) Click the Clear Plot button on the right.

2 Load fuzex2trnData and fuzex2chkData (respectively, the training data
and checking data) from the MATLAB workspace just as you did in the
previous example.

2-128



anfis and the ANFIS Editor GUI

You should see a plot similar to the one in the following figure. The training
data appears as circles superimposed with the checking data, appearing as
pluses.

Train the FIS for this system exactly as you did in the previous example,
except now choose 60 Epochs before training. You should get the following
plot, showing the checking error as ♦ ♦ on top and the training error as *
* on the bottom.

2-129



2 Tutorial

In this case, the checking error is quite large. It appears that the minimum
checking error occurs within the first epoch. Using the checking data option
with anfis automatically sets the FIS parameters to be those associated with
the minimum checking error. Clearly this set of membership functions is not
the best choice for modeling the training data.

This example illustrates the problem discussed earlier wherein the checking
data set presented to anfis for training was sufficiently different from the
training data set. As a result, the trained FIS did not capture the features
of this data set very well. It is important to know the features of your data
set well when you select your training and checking data. When you do not
know the features of your data, you can analyze the checking error plots to
see whether or not the checking data performed sufficiently well with the
trained model.

2-130



anfis and the ANFIS Editor GUI

In this example, the checking error is sufficiently large to indicate that either
you need to select more data for training or modify your membership function
choices (both the number of membership functions and the type). Otherwise,
the system can be retrained without the checking data, if you think the
training data sufficiently captures the features you are trying to represent.

To complete this example, test the trained FIS model against the checking
data. To do so, select Checking data in the Test FIS portion of the GUI, and
click Test Now. The following plot in the GUI indicates that there is quite a
discrepancy between the checking data output and the FIS output.

2-131



2 Tutorial

Predict Chaotic Time-Series (Code)
Generating a FIS using the ANFIS Editor GUI is quite simple. However, as
you saw in the last example, you need to be cautious about implementing the
checking data validation feature of anfis. You must check that the checking
data error does what is supposed to. Otherwise, you need to retrain the FIS.

This section describes how to carry out the command line features of anfis on
a chaotic times-series prediction example.

Using anfis for Chaotic Time-Series Prediction
The example mgtsdemo uses anfis to predict a time series that is generated
by the following Mackey-Glass (MG) time-delay differential equation.

x t
x t

x t
x t( ) =

−( )
+ −( )

− ( )0 2

1
0 1

10

.
.

τ

τ

This time series is chaotic, and so there is no clearly defined period. The
series does not converge or diverge, and the trajectory is highly sensitive to
initial conditions. This benchmark problem is used in the neural network and
fuzzy modeling research communities.

To obtain the time series value at integer points, we applied the fourth-order
Runge-Kutta method to find the numerical solution to the previous MG
equation; the result was saved in the file mgdata.dat. Assume x(0) = 1.2, τ =
17, and x(t) = 0 for time < 0. To plot the MG time series, type

load mgdata.dat
time = mgdata(:, 1); x = mgdata(:, 2);
figure(1), plot(time, x);
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')

2-132



anfis and the ANFIS Editor GUI

In time-series prediction, you need to use known values of the time series
up to the point in time, say, t, to predict the value at some point in the
future, say, t+P. The standard method for this type of prediction is to create
a mapping from D sample data points, sampled every Δ units in time,
(x(t-(D-1)Δ),..., x(t-Δ), x(t)), to a predicted future value x(t+P). Following the
conventional settings for predicting the MG time series, set D = 4 and Δ = P =
6. For each t, the input training data for anfis is a four-dimensional vector
of the following form.

w(t) = [x(t-18) x(t-12) x(t-6) x(t)]

The output training data corresponds to the trajectory prediction.

s(t) = x(t+6)

For each t, ranging in values from 118 to 1117, the training input/output
data is a structure whose first component is the four-dimensional input w,
and whose second component is the output s. There is 1000 input/output

2-133



2 Tutorial

data values. You use the first 500 data values for the anfis training (these
become the training data set), while the others are used as checking data for
validating the identified fuzzy model. This division of data values results in
two 500-point data structures, trnData and chkData.

The following code generates this data:

for t=118:1117,
Data(t-117,:)=[x(t-18) x(t-12) x(t-6) x(t) x(t+6)];
end
trnData=Data(1:500, :);
chkData=Data(501:end, :);

To start the training, you need a FIS structure that specifies the structure
and initial parameters of the FIS for learning. The genfis1 function handles
this specification.

fismat = genfis1(trnData);

Because you did not specify numbers and types of membership functions
used in the FIS, default values are assumed. These defaults provide two
generalized bell membership functions on each of the four inputs, eight
altogether. The generated FIS structure contains 16 fuzzy rules with 104
parameters. To achieve good generalization capability, it is important that
the number of training data points be several times larger than the number
parameters being estimated. In this case, the ratio between data and
parameters is about five (500/104).

The function genfis1 generates initial membership functions that are equally
spaced and cover the whole input space. You can plot the input membership
functions using the following commands.

figure(2)
subplot(2,2,1)
plotmf(fismat, 'input', 1)
subplot(2,2,2)
plotmf(fismat, 'input', 2)
subplot(2,2,3)
plotmf(fismat, 'input', 3)
subplot(2,2,4)
plotmf(fismat, 'input', 4)

2-134



anfis and the ANFIS Editor GUI

These following plots show these initial membership functions.

To start the training, type

[fismat1,error1,ss,fismat2,error2] = ...
anfis(trnData,fismat,[],[],chkData);

Because the checking data option of anfis is invoked, the final FIS you choose
is the one associated with the minimum checking error. This result is stored
in fismat2. The following code plots these new membership functions.

figure(3)
subplot(2,2,1)
plotmf(fismat2, 'input', 1)
subplot(2,2,2)
plotmf(fismat2, 'input', 2)
subplot(2,2,3)
plotmf(fismat2, 'input', 3)

2-135



2 Tutorial

subplot(2,2,4)
plotmf(fismat2, 'input', 4)

The following plots show the result.

To plot the error signals, type

figure(4)
plot([error1 error2]);
hold on; plot([error1 error2], 'o');
xlabel('Epochs');
ylabel('RMSE (Root Mean Squared Error)');
title('Error Curves');

2-136



anfis and the ANFIS Editor GUI

The plots display the root-mean-square error. The plot in blue represents
error1, the error for training data . The plot in green represents error2,
the error for checking data .

In addition to these error plots, you may want to plot the FIS output versus
the training or checking data. To compare the original MG time series and
the fuzzy prediction side by side, try

figure(5)
anfis_output = evalfis([trnData(:,1:4); chkData(:,1:4)], ...

fismat2);
index = 125:1124;
subplot(211), plot(time(index), [x(index) anfis_output]);
xlabel('Time (sec)');
title('MG Time Series and ANFIS Prediction');
subplot(212), plot(time(index), x(index) - anfis_output);
xlabel('Time (sec)');
title('Prediction Errors');

2-137



2 Tutorial

The difference between the original MG time series and the values estimated
using anfis is very small, Thus, you can only see one curve in the first plot.
The prediction error appears in the second plot with a much finer scale. You
trained for only 10 epochs. If you apply more extensive training, you get
better performance.

Save Training Error Data to MATLAB Workspace
When working in the ANFIS Editor GUI, you can export your initial FIS
structure to the MATLAB workspace and then save the ANFIS training error
values in the workspace.

The following example shows how to save the training error generated during
ANFIS training to the MATLAB workspace:

1 Load the training and checking data in the MATLAB workspace by typing
the following commands at the MATLAB prompt:

load fuzex1trnData.dat

2-138



anfis and the ANFIS Editor GUI

load fuzex1chkData.dat

2 Open the ANFIS Editor GUI by typing the following command:

anfisedit

The ANFIS Editor GUI opens, as shown in the next figure.

3 Load the training data from the MATLAB workspace into the ANFIS
Editor GUI:

a In the Load data panel of the ANFIS Editor, verify that Training is
selected in the Type column.

b Select worksp. in the From column.

c Click Load Data to open the Load from workspace dialog box.

2-139



2 Tutorial

d Type fuzex1trnData, and click OK.

The ANFIS Editor displays the training data in the plot as a set of
circles (○).

4 Load the checking data from the MATLAB workspace into the ANFIS
Editor GUI:

a In the Load data panel of the ANFIS Editor, select Checking in the
Type column.

2-140



anfis and the ANFIS Editor GUI

b Click Load Data to open the Load from workspace dialog box.

c Type fuzex1chkData as the variable name, and click OK.

The ANFIS Editor displays the checking data as plus signs (+)
superimposed on the training data.

5 Generate an initial FIS:

a In the Generate FIS panel, verify that Grid partition option is
selected.

b Click Generate FIS.

This action opens a dialog box where you specify the structure of the FIS.

2-141



2 Tutorial

c In the dialog box, specify the following:

• Enter 4 in the Number of MFs field.

• Select gbellmf as theMembership Type for the input.

• Select linear as theMembership Type for the output.

2-142



anfis and the ANFIS Editor GUI

d Click OK to generate the FIS and close the dialog box.

6 Export the initial FIS to the MATLAB workspace:

a In the ANFIS Editor GUI, select File > Export > To Workspace.

This action opens a dialog box where you specify the MATLAB variable
name.

2-143



2 Tutorial

b Enter initfis in the Workspace variable field.

c Click OK to close the dialog box.

A variable named initfis now appears in the MATLAB workspace.

7 Train the FIS for 40 epochs by typing the following command at the
MATLAB prompt:

figure;hold on;
fismat=initfis;
for ct=1:40,
[fismat,error]=anfis(fuzex1trnData,fismat,...

2,NaN,fuzex1chkData,1);
plot(ct,error(1),'b*');
end

To improve accuracy when you train the FIS, the code uses the results
of the current iteration returned by the anfis command as the initial
conditions for the next iteration. The output argument error contains the
root mean squared errors representing the training data error. For more
information, see the anfis reference page.

2-144



anfis and the ANFIS Editor GUI

The plot of the training error versus the number of epochs appears in the
next figure.

Comparison of anfis and ANFIS Editor Functionality
This topic discusses the arguments and range components of the command
line function anfis and the analogous functionality of the ANFIS Editor GUI.

The command anfis takes at least two and at most six input arguments.
The general format is

[fismat1,trnError,ss,fismat2,chkError] = ...
anfis(trnData,fismat,trnOpt,dispOpt,chkData,method);

where trnOpt (training options), dispOpt (display options), chkData (checking
data), andmethod (training method), are optional. All output arguments are
also optional.

2-145



2 Tutorial

When you open the ANFIS Editor GUI using anfisedit, only the training
data set must exist prior to implementing anfis. In addition, the step-size is
fixed when the adaptive neuro-fuzzy system is trained using this GUI tool.

Training Data
The training data, trnData, is a required argument to anfis, as well as
to the ANFIS Editor GUI. Each row of trnData is a desired input/output
pair of the target system you want to model Each row starts with an input
vector and is followed by an output value. Therefore, the number of rows of
trnData is equal to the number of training data pairs, and, because there is
only one output, the number of columns of trnData is equal to the number of
inputs plus one.

Input FIS Structure
You can obtain the input FIS structure, fismat, from any of the fuzzy editors:

• The FIS Editor

• The Membership Function Editor

• The Rule Editor from the ANFIS Editor GUI (which allows a FIS structure
to be loaded from a file or the MATLAB workspace)

• The command line function, genfis1 (for which you only need to give
numbers and types of membership functions)

The FIS structure contains both the model structure, (which specifies such
items as the number of rules in the FIS, the number of membership functions
for each input, etc.), and the parameters, (which specify the shapes of
membership functions).

There are two methods that anfis learning employs for updating membership
function parameters:

• Backpropagation for all parameters (a steepest descent method)

• A hybrid method consisting of backpropagation for the parameters
associated with the input membership functions, and least squares
estimation for the parameters associated with the output membership
functions

2-146



anfis and the ANFIS Editor GUI

As a result, the training error decreases, at least locally, throughout the
learning process. Therefore, the more the initial membership functions
resemble the optimal ones, the easier it will be for the model parameter
training to converge. Human expertise about the target system to be modeled
may aid in setting up these initial membership function parameters in the
FIS structure.

The genfis1 function produces a FIS structure based on a fixed number
of membership functions. This structure invokes the so-called curse of
dimensionality, and causes excessive propagation of the number of rules when
the number of inputs is moderately large, that is, more than four or five. Fuzzy
Logic Toolbox software offers a method that provides for some dimension
reduction in the fuzzy inference system: you can generate a FIS structure
using the clustering algorithm discussed in “Subtractive Clustering” on page
2-158. To use the clustering algorithm, you must select the Sub. Clustering
option in the Generate FIS portion of the ANFIS Editor GUI before the FIS
is generated. This subtractive clustering method partitions the data into
groups called clusters, and generates a FIS with the minimum number rules
required to distinguish the fuzzy qualities associated with each of the clusters.

Training Options
The ANFIS Editor GUI tool allows you to choose your desired error tolerance
and number of training epochs.

Training option trnOpt for the command line anfis is a vector that specifies
the stopping criteria and the step-size adaptation strategy:

• trnOpt(1): number of training epochs, default = 10

• trnOpt(2): error tolerance, default = 0

• trnOpt(3): initial step-size, default = 0.01

• trnOpt(4): step-size decrease rate, default = 0.9

• trnOpt(5): step-size increase rate, default = 1.1

If any element of trnOpt is an NaN or missing, then the default value is taken.
The training process stops if the designated epoch number is reached or the
error goal is achieved, whichever comes first.

2-147



2 Tutorial

Usually, the step-size profile is a curve that increases initially, reaches
some maximum, and then decreases for the remainder of the training. You
achieve this ideal step-size profile by adjusting the initial step-size and the
increase and decrease rates (trnOpt(3) - trnOpt(5)). The default values are
set up to cover a wide range of learning tasks. For any specific application,
you may want to modify these step-size options in order to optimize the
training. However, there are no user-specified step-size options for training
the adaptive neuro-fuzzy inference system generated using the ANFIS Editor
GUI.

Display Options
Display options apply only to the command-line function anfis.

For the command line anfis, the display options argument, dispOpt, is a
vector of either 1s or 0s that specifies what information to display, (print
in the MATLAB command window), before, during, and after the training
process. A 1 is used to denote print this option, whereas a 0 denotes do not
print this option:

• dispOpt(1): display ANFIS information, default = 1

• dispOpt(2): display error (each epoch), default = 1

• dispOpt(3): display step-size (each epoch), default = 1

• dispOpt(4): display final results, default = 1

The default mode displays all available information. If any element of
dispOpt is NaN or missing, the default value is used.

Method
Both the ANFIS Editor GUI and the command line anfis apply either
a backpropagation form of the steepest descent method for membership
function parameter estimation, or a combination of backpropagation and the
least-squares method to estimate membership function parameters. The
choices for this argument are hybrid or backpropagation. These method
choices are designated in the command line function, anfis, by 1 and 0,
respectively.

2-148



anfis and the ANFIS Editor GUI

Output FIS Structure for Training Data
fismat1 is the output FIS structure corresponding to a minimal training
error. This FIS structure is the one that you use to represent the fuzzy system
when there is no checking data used for model cross-validation. This data also
represents the FIS structure that is saved by the ANFIS Editor GUI when
the checking data option is not used.

When you use the checking data option, the output saved is that associated
with the minimum checking error.

Training Error
The training error is the difference between the training data output value,
and the output of the fuzzy inference system corresponding to the same
training data input value, (the one associated with that training data output
value). The training error trnError records the root mean squared error
(RMSE) of the training data set at each epoch. fismat1 is the snapshot
of the FIS structure when the training error measure is at its minimum.
The ANFIS Editor GUI plots the training error versus epochs curve as the
system is trained.

Step-Size
You cannot control the step-size options with the ANFIS Editor GUI. Using
the command line anfis, the step-size array ss records the step-size during
the training. Plotting ss gives the step-size profile, which serves as a
reference for adjusting the initial step-size and the corresponding decrease
and increase rates. The step-size (ss) for the command-line function anfis
is updated according to the following guidelines:

• If the error undergoes four consecutive reductions, increase the step-size by
multiplying it by a constant (ssinc) greater than one.

• If the error undergoes two consecutive combinations of one increase and
one reduction, decrease the step-size by multiplying it by a constant
(ssdec) less than one.

The default value for the initial step-size is 0.01; the default values for ssinc
and ssdec are 1.1 and 0.9, respectively. All the default values can be changed
via the training option for the command line anfis.

2-149



2 Tutorial

Checking Data
The checking data, chkData, is used for testing the generalization capability
of the fuzzy inference system at each epoch. The checking data has the same
format as that of the training data, and its elements are generally distinct
from those of the training data.

The checking data is important for learning tasks for which the input number
is large, and/or the data itself is noisy. A fuzzy inference system needs to
track a given input/output data set well. Because the model structure used
for anfis is fixed, there is a tendency for the model to overfit the data
on which is it trained, especially for a large number of training epochs. If
overfitting does occur, the fuzzy inference system may not respond well to
other independent data sets, especially if they are corrupted by noise. A
validation or checking data set can be useful for these situations. This data
set is used to cross-validate the fuzzy inference model. This cross-validation
requires applying the checking data to the model and then seeing how well
the model responds to this data.

When the checking data option is used with anfis, either via the command
line, or using the ANFIS Editor GUI, the checking data is applied to the
model at each training epoch. When the command line anfis is invoked,
the model parameters that correspond to the minimum checking error are
returned via the output argument fismat2. The FIS membership function
parameters computed using the ANFIS Editor GUI when both training and
checking data are loaded are associated with the training epoch that has
a minimum checking error.

The use of the minimum checking data error epoch to set the membership
function parameters assumes

• The checking data is similar enough to the training data that the checking
data error decreases as the training begins.

• The checking data increases at some point in the training after the data
overfitting occurs.

Depending on the behavior of the checking data error, the resulting FIS may
or may not be the one you need to use. Refer to “Checking Data Does Not
Validate Model” on page 2-128.

2-150



anfis and the ANFIS Editor GUI

Output FIS Structure for Checking Data
The output of the command line anfis, fismat2, is the output FIS structure
with the minimum checking error. This FIS structure is the one that you
should use for further calculation if checking data is used for cross validation.

Checking Error
The checking error is the difference between the checking data output value,
and the output of the fuzzy inference system corresponding to the same
checking data input value, which is the one associated with that checking
data output value. The checking error chkError records the RMSE for the
checking data at each epoch. fismat2 is the snapshot of the FIS structure
when the checking error is at its minimum. The ANFIS Editor GUI plots the
checking error versus epochs curve as the system is trained.

2-151



2 Tutorial

Fuzzy Clustering

In this section...

“What Is Data Clustering?” on page 2-152

“Fuzzy C-Means Clustering” on page 2-153

“Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page
2-154

“Subtractive Clustering” on page 2-158

“Model Suburban Commuting Using Subtractive Clustering” on page 2-159

“Data Clustering Using the Clustering Tool” on page 2-170

What Is Data Clustering?
Clustering of numerical data forms the basis of many classification and
system modeling algorithms. The purpose of clustering is to identify natural
groupings of data from a large data set to produce a concise representation of
a system’s behavior.

Fuzzy Logic Toolbox tools allow you to find clusters in input-output training
data. You can use the cluster information to generate a Sugeno-type fuzzy
inference system that best models the data behavior using a minimum
number of rules. The rules partition themselves according to the fuzzy
qualities associated with each of the data clusters. Use the command-line
function, genfis2 to automatically accomplish this type of FIS generation.

References

[1] Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[2] Chiu, S., “Fuzzy Model Identification Based on Cluster Estimation,”
Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, Spet. 1994.

2-152



Fuzzy Clustering

Fuzzy C-Means Clustering
Fuzzy c-means (FCM) is a data clustering technique wherein each data point
belongs to a cluster to some degree that is specified by a membership grade.
This technique was originally introduced by Jim Bezdek in 1981[1] as an
improvement on earlier clustering methods. It provides a method that shows
how to group data points that populate some multidimensional space into a
specific number of different clusters.

Fuzzy Logic Toolbox command line function fcm starts with an initial guess
for the cluster centers, which are intended to mark the mean location of each
cluster. The initial guess for these cluster centers is most likely incorrect.
Additionally, fcm assigns every data point a membership grade for each
cluster. By iteratively updating the cluster centers and the membership
grades for each data point, fcm iteratively moves the cluster centers to the
right location within a data set. This iteration is based on minimizing an
objective function that represents the distance from any given data point to a
cluster center weighted by that data point’s membership grade.

The command line function fcm outputs a list of cluster centers and several
membership grades for each data point. You can use the information returned
by fcm to help you build a fuzzy inference system by creating membership
functions to represent the fuzzy qualities of each cluster.

2-153



2 Tutorial

Cluster Quasi-Random Data Using Fuzzy C-Means
Clustering
You can use quasi-random two-dimensional data to illustrate how FCM
clustering works. To load the data set and plot it, type the following
commands:

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),'o')

Next, invoke the command-line function fcm to find two clusters in this data
set until the objective function is no longer decreasing much at all.

[center,U,objFcn] = fcm(fcmdata,2);

2-154



Fuzzy Clustering

Here, the variable center contains the coordinates of the two cluster centers,
U contains the membership grades for each of the data points, and objFcn
contains a history of the objective function across the iterations.

This command returns the following result:

Iteration count = 1, obj. fcn = 8.794048
Iteration count = 2, obj. fcn = 6.986628
.....
Iteration count = 12, obj. fcn = 3.797430

The fcm function is an iteration loop built on top of the following routines:

• initfcm — initializes the problem

• distfcm — performs Euclidean distance calculation

• stepfcm — performs one iteration of clustering

2-155



2 Tutorial

To view the progress of the clustering, plot the objective function by typing
the following commands:

figure
plot(objFcn)
title('Objective Function Values')
xlabel('Iteration Count')
ylabel('Objective Function Value')

2-156



Fuzzy Clustering

Finally, plot the two cluster centers found by the fcm function using the
following code:

maxU = max(U);
index1 = find(U(1, :) == maxU);
index2 = find(U(2, :) == maxU);
figure
line(fcmdata(index1, 1), fcmdata(index1, 2), 'linestyle',...
'none','marker', 'o','color','g');
line(fcmdata(index2,1),fcmdata(index2,2),'linestyle',...
'none','marker', 'x','color','r');
hold on
plot(center(1,1),center(1,2),'ko','markersize',15,'LineWidth',2)
plot(center(2,1),center(2,2),'kx','markersize',15,'LineWidth',2)

Note Every time you run this example, the fcm function initializes with
different initial conditions. This behavior swaps the order in which the cluster
centers are computed and plotted.

2-157



2 Tutorial

In the following figure, the large characters indicate cluster centers.

Subtractive Clustering
If you do not have a clear idea how many clusters there should be for a
given set of data, Subtractive clustering, [2], is a fast, one-pass algorithm for
estimating the number of clusters and the cluster centers in a set of data. The
cluster estimates, which are obtained from the subclust function, can be
used to initialize iterative optimization-based clustering methods (fcm) and
model identification methods (like anfis). The subclust function finds the
clusters by using the subtractive clustering method.

2-158



Fuzzy Clustering

The genfis2 function builds upon the subclust function to provide a
fast, one-pass method to take input-output training data and generate a
Sugeno-type fuzzy inference system that models the data behavior.

Model Suburban Commuting Using Subtractive
Clustering
In this example, you apply the genfis2 function to model the relationship
between the number of automobile trips generated from an area and the area’s
demographics. Demographic and trip data are from 100 traffic analysis zones
in New Castle County, Delaware. Five demographic factors are considered:
population, number of dwelling units, vehicle ownership, median household
income, and total employment. Hence, the model has five input variables and
one output variable.

Load and plot the data by typing the following commands:

clear
close all
mytripdata
subplot(2,1,1), plot(datin)
subplot(2,1,2), plot(datout)

The next figure displays the input and the output data.

2-159



2 Tutorial

The function tripdata creates several variables in the workspace. Of the
original 100 data points, use 75 data points as training data (datin and
datout) and 25 data points as checking data, (as well as for test data to
validate the model). The checking data input/output pairs are denoted by
chkdatin and chkdatout.

Use the genfis2 function to generate a model from data using clustering.
genfis2 requires you to specify a cluster radius. The cluster radius indicates
the range of influence of a cluster when you consider the data space as a
unit hypercube. Specifying a small cluster radius usually yields many small
clusters in the data, and results in many rules. Specifying a large cluster
radius usually yields a few large clusters in the data, and results in fewer
rules. The cluster radius is specified as the third argument of genfis2. The
following syntax calls the genfis2 function using a cluster radius of 0.5.

2-160



Fuzzy Clustering

fismat=genfis2(datin,datout,0.5);

The genfis2 function is a fast, one-pass method that does not perform any
iterative optimization. A FIS structure is returned; the model type for the FIS
structure is a first order Sugeno model with three rules.

Use the following commands to verify the model. Here, trnRMSE is the root
mean square error of the system generated by the training data.

fuzout=evalfis(datin,fismat);
trnRMSE=norm(fuzout-datout)/sqrt(length(fuzout))

These commands return the following result:

trnRMSE =
0.5276

Next, apply the test data to the FIS to validate the model. In this example,
the checking data is used for both checking and testing the FIS parameters.
Here, chkRMSE is the root mean square error of the system generated by the
checking data.

chkfuzout=evalfis(chkdatin,fismat);
chkRMSE=norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout))

These commands return the following result:

chkRMSE =
0.6179

2-161



2 Tutorial

Use the following commands to plot the output of the model chkfuzout
against the checking data chkdatout.

figure
plot(chkdatout)
hold on
plot(chkfuzout,'o')
hold off

The model output and checking data are shown as circles and solid blue line,
respectively. The plot shows the model does not perform well on the checking
data.

2-162



Fuzzy Clustering

At this point, you can use the optimization capability of anfis to improve the
model. First, try using a relatively short anfis training (20 epochs) without
implementing the checking data option, and then test the resulting FIS model
against the testing data. To perform the optimization, type the following
command:

fismat2=anfis([datin datout],fismat,[20 0 0.1]);

Here, 20 is the number of epochs, 0 is the training error goal, and 0.1 is the
initial step size.

This command returns the following result:

ANFIS info:

Number of nodes: 44

Number of linear parameters: 18

Number of nonlinear parameters: 30

Total number of parameters: 48

Number of training data pairs: 75

Number of checking data pairs: 0

Number of fuzzy rules: 3

Start training ANFIS ...

1 0.527607

.

.

20 0.420275

Designated epoch number reached --> ANFIS training completed at epoch 20.

After the training is done, validate the model by typing the following
commands:

fuzout2=evalfis(datin,fismat2);
trnRMSE2=norm(fuzout2-datout)/sqrt(length(fuzout2))
chkfuzout2=evalfis(chkdatin,fismat2);
chkRMSE2=norm(chkfuzout2-chkdatout)/sqrt(length(chkfuzout2))

These commands return the following results:

2-163



2 Tutorial

trnRMSE2 =
0.4203

chkRMSE2 =
0.5894

The model has improved a lot with respect to the training data, but only a little
with respect to the checking data. Plot the improved model output obtained
using anfis against the testing data by typing the following commands:

figure
plot(chkdatout)
hold on
plot(chkfuzout2,'o')
hold off

2-164



Fuzzy Clustering

The next figure shows the model output.

The model output and checking data are shown as circles and solid blue line,
respectively. This plot shows that genfis2 can be used as a stand-alone,
fast method for generating a fuzzy model from data, or as a preprocessor to
anfis for determining the initial rules. An important advantage of using a
clustering method to find rules is that the resultant rules are more tailored
to the input data than they are in a FIS generated without clustering. This
reduces the problem of an excessive propagation of rules when the input data
has a high dimension.

Overfitting
Overfitting can be detected when the checking error starts to increase while
the training error continues to decrease.

2-165



2 Tutorial

To check the model for overfitting, use anfis with the checking data option to
train the model for 200 epochs. Here, fismat3 is the FIS structure when the
training error reaches a minimum. fismat4 is the snapshot FIS structure
taken when the checking data error reaches a minimum.

[fismat3,trnErr,stepSize,fismat4,chkErr]= ...
anfis([datin datout],fismat,[200 0 0.1],[], ...
[chkdatin chkdatout]);

This command returns a list of output arguments. The output arguments
show a history of the step sizes, the RMSE using the training data, and the
RMSE using the checking data for each training epoch.

1 0.527607 0.617875
2 0.513727 0.615487
.
.
200 0.326576 0.601531

Designated epoch number reached --> ANFIS training completed at
epoch 200.

After the training completes, validate the model by typing the following
commands:

fuzout4=evalfis(datin,fismat4);
trnRMSE4=norm(fuzout4-datout)/sqrt(length(fuzout4))
chkfuzout4=evalfis(chkdatin,fismat4);
chkRMSE4=norm(chkfuzout4-chkdatout)/sqrt(length(chkfuzout4))

These commands return the following results:

trnRMSE4 =
0.3393

chkRMSE4 =
0.5833

The error with the training data is the lowest thus far, and the error with the
checking data is also slightly lower than before. This result suggests perhaps
there is an overfit of the system to the training data. Overfitting occurs when

2-166



Fuzzy Clustering

you fit the fuzzy system to the training data so well that it no longer does a
very good job of fitting the checking data. The result is a loss of generality.

To view the improved model output, plot the model output against the
checking data by typing the following commands:

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'o')
hold off

The model output and checking data are shown as circles and solid blue line,
respectively.

2-167



2 Tutorial

Next, plot the training error trnErr by typing the following commands:

figure
plot(trnErr)
Title('Training Error')
xlabel('Number of Epochs')
ylabel('Training Error')

This plot shows that the training error settles at about the 60th epoch point.

2-168



Fuzzy Clustering

Plot the checking error chkErr by typing the following commands:

figure
plot(chkErr)
Title('Checking Error')
xlabel('Number of Epochs')
ylabel('Checking Error')

The plot shows that the smallest value of the checking data error occurs at
the 52nd epoch, after which it increases slightly even as anfis continues to
minimize the error against the training data all the way to the 200th epoch.
Depending on the specified error tolerance, the plot also indicates the model’s
ability to generalize the test data.

2-169



2 Tutorial

You can also compare the output of fismat2 and fistmat4 against the
checking data chkdatout by typing the following commands:

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'ob')
plot(chkfuzout2,'+r')

Data Clustering Using the Clustering Tool
The Clustering GUI Tool implements the fuzzy data clustering functions
fcm and subclust and lets you perform clustering on the data. For more

2-170



Fuzzy Clustering

information on the clustering functions, see “Fuzzy C-Means Clustering” on
page 2-153 and “Subtractive Clustering” on page 2-158.

To start the GUI, type the following command at the MATLAB command
prompt:

findcluster

The Clustering GUI Tool shown in the next figure.

This GUI lets you perform the following tasks:

1 Load and plot the data.

2 Start the clustering.

3 Save the cluster center.

2-171



2 Tutorial

Access the online help topics by clicking Info or using the Help menu in
the Clustering GUI.

Loading and Plotting the Data
To load a data set in the GUI, perform either of the following actions:

• Click Load Data, and select the file containing the data.

• Open the GUI with a data set directly by invoking findcluster with the
data set as the argument, in the MATLAB Command Window.

The data set must have the extension.dat. For example, to load the data
set, clusterdemo.dat, type findcluster('clusterdemo.dat').

The Clustering GUI Tool works on multidimensional data sets, but displays
only two of those dimensions on the plot. To select other dimensions in the
data set for plotting, you can use the drop-down lists under X-axis and Y-axis.

Starting the Clustering
To start clustering the data:

1 Choose the clustering function fcm (fuzzy C-Means clustering) or
subtractiv (subtractive clustering) from the drop-down menu under
Methods.

2 Set options for the selected method using the Influence Range, Squash,
Aspect Ratio, and Reject Ratio fields.

For more information on these methods and their options, refer to fcm,
and subclust respectively.

3 Begin clustering by clicking Start.

After clustering gets completed, the cluster centers appear in black as
shown in the next figure.

2-172



Fuzzy Clustering

Saving the Cluster Center
To save the cluster centers, click Save Center.

2-173



2 Tutorial

Simulating Fuzzy Inference Systems Using the Fuzzy
Inference Engine

In this section...

“About the Fuzzy Inference Engine” on page 2-174

“Simulate Systems on Windows Platforms” on page 2-175

“Simulate Systems on UNIX Platforms” on page 2-179

About the Fuzzy Inference Engine
Fuzzy Logic Toolbox software provides a stand-alone C code fuzzy inference
engine. You can use the engine as an alternative tool to simulate the
outputs of your fuzzy inference system (FIS), without using the MATLAB
environment. You can perform the following tasks using the fuzzy inference
engine:

• Perform fuzzy inference using a FIS structure file and an input data file.

To learn more about how to create a FIS structure file, see “Build Mamdani
Systems (GUI)” on page 2-35.

• Customize the fuzzy inference engine to include your own membership
functions.

• Embed the executable code in other external applications.

The stand-alone fuzzy inference engine consists of two C code source files
fismain.c and fis.c in the matlabroot\toolbox\fuzzy\fuzzy folder.

The fismain.c file contains only the main() function and you can easily
modify it to adapt to other applications. It is ANSI Ccompatible, and you can
compile it with any ANSI Ccompiler.

The fis.c file contains all the necessary functions to perform the fuzzy
inference process:

• This file provides the 11 Fuzzy Logic Toolbox membership functions with
their default settings.

2-174



Simulating Fuzzy Inference Systems Using the Fuzzy Inference Engine

• You can add a new membership function or new reasoning mechanism
by updating the fis.c file.

The fismain executable code, generated after compiling the source codes,
reads an input data file and a FIS structure file to simulate the output. The
syntax for calling fismain is similar to its MEX-file counterpart evalfis,
except that all matrices are replaced with files. To learn more about evalfis,
see the evalfis function reference page.

Simulate Systems on Windows Platforms
This example shows how to simulate a fuzzy inference system on a Windows®

platform using the stand-alone fuzzy inference engine. In this example, you
use the LCC C compiler shipped with MATLAB to compile the fuzzy inference
engine source codes.

1 Open a DOS Command Window and change the folder to
matlabroot\toolbox\fuzzy\fuzzy.

Tip You can find the root folder of your MATLAB installation by typing
matlabroot at the MATLAB command prompt.

2 In the DOS Command Window, type the following command:

lcc -c fismain.c

This command creates the fismain.obj object file in the
matlabroot\toolbox\fuzzy\fuzzy folder.

2-175



2 Tutorial

Note You may encounter the following error when executing the lcc
command:

'lcc' is not recognized as an internal or external command,
operable program or batch file.

To learn how to troubleshoot this error, see the “Including the lcc
Command in the PATH Environment Variable” on page 2-178 section.

3 In the DOS Command Window, type the following command:

lcclnk fismain.obj.

This command creates an executable file fismain.exe in the
matlabroot\toolbox\fuzzy\fuzzy folder.

Note You may encounter the following error when executing the lcclnk
command:

'lcclnk' is not recognized as an internal or external command,
operable program or batch file.

To learn how to troubleshoot this error, see the “Including the lcclnk
Command in the PATH Environment Variable” on page 2-178 section.

4 Open MATLAB desktop, and change to your current working folder using
the Current Folder field in the MATLAB desktop toolbar.

5 At the MATLAB prompt, type the following command to create an input
data file:

[x, y] = meshgrid(-5:5, -5:5);
input_data = [x(:) y(:)];
save fis_in input_data -ascii

2-176



Simulating Fuzzy Inference Systems Using the Fuzzy Inference Engine

This command saves the input data as a 121-by-2 matrix in the fis_in
ASCII file in your current working folder. Each row of the matrix
represents an input vector.

6 Copy the FIS structure file mam21.fis from the
matlabroot\toolbox\fuzzy\fuzdemos folder to your current working
folder.

7 Copy the stand-alone executable file fismain.exe from the
matlabroot\toolbox\fuzzy\fuzzy folder to your current working folder.

8 In the DOS Command Window, change the folder to your current working
folder, and type the following command to call the stand-alone executable
code:

fismain fis_in mam21.fis

This command uses the data file fis_in and the FIS structure file
mam21.fis, and generates 121 outputs on your screen.

Tip You can also direct the outputs to a file using the following command
in the DOS Command Window:

fismain fis_in mam21.fis > fis_out

This command saves the output data fis_out as a 121-by-1 matrix in
your current working folder. Each row of the output matrix represents
an output vector.

2-177



2 Tutorial

9 To verify that the fuzzy inference engine output matches the MATLAB
MEX-file evalfis.m output, type the following command at the MATLAB
prompt:

fismat = readfis('mam21');
matlab_out = evalfis(input_data, fismat);
load fis_out
max(max(matlab_out - fis_out))

This command returns the following result:

ans =

4.9583e-013

The difference results from the relative precision between the outputs.

Including the lcc Command in the PATH Environment Variable
When executing the lcc command to create the fismain.obj object file, you
get the following error if the command and/or the path for the <include>
header files are not in the PATH environment variable:

'lcc' is not recognized as an internal or external command,
operable program or batch file.

To include the command in the PATH environment variable, type the following
in the DOS Command Window:

matlabroot\sys\lcc\bin\lcc -Imatlabroot\sys\lcc\include fismain.c

Press Enter when prompted to Please enter the path for the
<include> header files.

Including the lcclnk Command in the PATH Environment
Variable
When executing the lcclnk command to create the fismain.exe file, you get
the following error if the command is not in the PATH environment variable:

2-178



Simulating Fuzzy Inference Systems Using the Fuzzy Inference Engine

'lcclnk' is not recognized as an internal or external command,
operable program or batch file.

To include the command in the PATH environment variable, type the following
in the DOS Command Window:

matlabroot\sys\lcc\bin\lcclnk fismain.obj

Simulate Systems on UNIX Platforms
This example shows how to simulate a fuzzy inference system on a UNIX®

platform using the stand-alone fuzzy inference engine.

1 Open a UNIX Command Window and change the folder to
matlabroot\toolbox\fuzzy\fuzzy.

Tip You can find the root folder of your MATLAB installation by typing
matlabroot at the MATLAB command prompt.

2 In the UNIX Command Window, type the following command:

cc -O -o fismain fismain.c -lm

This command creates the fismain file in the
matlabroot\toolbox\fuzzy\fuzzy folder.

The fis.c file is included in the fismain.c file; you do not have to compile
it separately.

3 At the MATLAB prompt, create an input data file using the following
command:

[x, y] = meshgrid(-5:5, -5:5);
input_data = [x(:) y(:)];
save fis_in input_data -ascii

This command saves the input data as a 121-by-2 matrix in the ASCII file
fis_in in your current working folder. Each row of the matrix represents
an input vector.

2-179



2 Tutorial

Tip You can find your current working folder in the Current Folder field
in the MATLAB desktop toolbar.

4 Copy the FIS structure file mam21.fis from the
matlabroot\toolbox\fuzzy\fuzdemos folder to your current working
folder.

5 Copy the fismain file from the matlabroot\toolbox\fuzzy\fuzzy folder to
your current working folder.

6 In the UNIX Command Window, change the folder to your current working
folder, and type the following executable command:

fismain fis_in mam21.fis

This command uses the data file fis_in and the FIS structure file
mam21.fis and generates 121 outputs on your screen.

Tip You can also direct the outputs to another file using the following
command in the DOS Command Window:

fismain fis_in mam21.fis > fis_out

This command saves the output data fis_out as a 121-by-1 matrix in
your current working folder. Each row of the output matrix represents
an output vector.

2-180



Simulating Fuzzy Inference Systems Using the Fuzzy Inference Engine

7 To verify that the fuzzy inference engine output matches the MATLAB
MEX-file evalfis.m output, type the following command at the MATLAB
prompt:

fismat = readfis('mam21');
matlab_out = evalfis(input_data, fismat);
load fis_out
max(max(matlab_out - fis_out))

This command returns the following result:

ans =

4.9583e-013

The difference results from the relative precision between the outputs.

2-181



2 Tutorial

2-182



3

Functions — Alphabetical
List



addmf

Purpose Add membership function to Fuzzy Inference System

Syntax a = addmf(a,'varType',varIndex,'mfName','mfType',mfParams)

Description A membership function can be added only to a variable in an existing
MATLAB workspace FIS. Indices are assigned to membership functions
in the order in which they are added, so the first membership function
added to a variable is always known as membership function number
one for that variable. You cannot add a membership function to input
variable number two of a system if only one input has been defined.

The function requires six input arguments in this order:

1 A MATLAB variable name of a FIS structure in the workspace

2 A string representing the type of variable you want to add the
membership function to ('input' or 'output')

3 The index of the variable you want to add the membership function to

4 A string representing the name of the new membership function

5 A string representing the type of the new membership function

6 The vector of parameters that specify the membership function

Examples a = newfis('tipper');
a = addvar(a,'input','service',[0 10]);
a = addmf(a,'input',1,'poor','gaussmf',[1.5 0]);
a = addmf(a,'input',1,'good','gaussmf',[1.5 5]);
a = addmf(a,'input',1,'excellent','gaussmf',[1.5 10]);
plotmf(a,'input',1)

3-2



addmf

See Also addrule | addvar | plotmf | rmmf | rmvar

3-3



addrule

Purpose Add rule to Fuzzy Inference System

Syntax a = addrule(a,ruleList)

Description addrule has two arguments. The first argument is the MATLAB
workspace variable FIS name. The second argument is a matrix of one
or more rows, each of which represents a given rule. The format that
the rule list matrix must take is very specific. If there are m inputs
to a system and n outputs, there must be exactly m + n + 2 columns
to the rule list.

The first m columns refer to the inputs of the system. Each column
contains a number that refers to the index of the membership function
for that variable.

The next n columns refer to the outputs of the system. Each column
contains a number that refers to the index of the membership function
for that variable.

The m + n + 1 column contains the weight that is to be applied to
the rule. The weight must be a number between zero and one and is
generally left as one.

The m + n + 2 column contains a 1 if the fuzzy operator for the rule’s
antecedent is AND. It contains a 2 if the fuzzy operator is OR.

Examples ruleList=[
1 1 1 1 1
1 2 2 1 1];

a = addrule(a,ruleList);

If the system a has two inputs and one output, the first rule can be
interpreted as:

“If Input 1 is MF 1 and Input 2 is MF 1, then Output 1 is MF 1.”

See Also addmf | addvar | parsrule | rmmf | rmvar | showrule

3-4



addvar

Purpose Add variable to Fuzzy Inference System

Syntax a = addvar(a,'varType','varName',varBounds)

Description addvar has four arguments in this order:

• The name of a FIS structure in the MATLAB workspace

• A string representing the type of the variable you want to add
('input' or 'output')

• A string representing the name of the variable you want to add

• The vector describing the limiting range values for the variable you
want to add

Indices are applied to variables in the order in which they are added,
so the first input variable added to a system is always known as input
variable number one for that system. Input and output variables are
numbered independently.

Examples a = newfis('tipper');
a = addvar(a,'input','service',[0 10]);
getfis(a,'input',1)

This command returns the following result:

Name = service
NumMFs = 0
MFLabels =
Range = [0 10]

See Also addmf | addrule | rmmf | rmvar

3-5



anfis

Purpose Training routine for Sugeno-type Fuzzy Inference System (MEX only)

Syntax [fis,error,stepsize] = anfis(trnData)

[fis,error,stepsize] = anfis(trnData,initFis)

[fis,error,stepsize] = anfis(trnData,numMFs)

[fis,error,stepsize,chkFis,chkErr] = ...

anfis(trnData,initFis,trnOpt,dispOpt,chkData,optMethod)

[fis,error,stepsize,chkFis,chkErr] = ...

anfis(trnData,numMFs,trnOpt,dispOpt,chkData,optMethod)

Description This syntax is the major training routine for Sugeno-type fuzzy inference
systems. anfis uses a hybrid learning algorithm to identify parameters
of Sugeno-type fuzzy inference systems. It applies a combination of
the least-squares method and the backpropagation gradient descent
method for training FIS membership function parameters to emulate a
given training data set. anfis can also be invoked using an optional
argument for model validation. The type of model validation that takes
place with this option is a checking for model overfitting, and the
argument is a data set called the checking data set.

anfis only supports Sugeno-type systems, and these must have the
following properties:

• Be first or zeroth order Sugeno-type systems.

• Have a single output, obtained using weighted average
defuzzification. All output membership functions must be the same
type and either be linear or constant.

• Have no rule sharing. Different rules cannot share the same output
membership function, namely the number of output membership
functions must be equal to the number of rules.

3-6



anfis

• Have unity weight for each rule.

An error occurs if your FIS structure does not comply with these
constraints.

Moreover, anfis cannot accept all the customization options that basic
fuzzy inference allows. That is, you cannot make your own membership
functions and defuzzification functions; you must use the ones provided.

The arguments in the description for anfis are as follows. Note
that you can specify the arguments trnOpt, dispOpt, chkData, and
optMethod as empty, [], when necessary:

• trnData: the name of a training data set. This matrix contains data
input in all but the last column. The last column contains a single
vector of output data.

• initFis: the name of a fuzzy inference system (FIS) used to provide
anfis with an initial set of membership functions for training.
Without this option, anfis uses genfis1 to implement a default
initial FIS for training. This default FIS has two membership
functions of the Gaussian type, when it is invoked with only one
argument. If initFis is provided as a single number (or a vector),
it is taken as the number of membership functions (or the vector)
whose entries are the respective numbers of membership functions
associated with each respective input when these numbers differ
for each input). In this case, both arguments of anfis are passed
to genfis1 to generate a valid FIS structure before starting the
training process.

• numMFs: the number of membership functions. Use numMFs, an
integer scalar value, as the second argument to anfis when you do
not already have a FIS to train and you want anfis to build a default
initial FIS using your data. Each input and output to this FIS is
characterized by one or more membership functions. Specify the
number of membership functions in numMFs.

• trnOpt: a vector of training options. When a training option is
entered as NaN, the default options is in force. These options are as
follows:

3-7



anfis

- trnOpt(1): training epoch number (default: 10)

- trnOpt(2): training error goal (default: 0)

- trnOpt(3): initial step size (default: 0.01)

- trnOpt(4): step size decrease rate (default: 0.9)

- trnOpt(5): step size increase rate (default: 1.1)

• dispOpt: a vector of display options that specify what message
to display in the MATLAB Command Window during training.
The default value for a display option is 1, which means that the
corresponding information is displayed. A 0 means the corresponding
information is not displayed. When a display option is entered as
NaN, the default options will be in force. These options are as follows:

- dispOpt(1): ANFIS information, such as numbers of input and
output membership functions, and so on (default: 1)

- dispOpt(2): error (default: 1)

- dispOpt(3): step size at each parameter update (default: 1)

- dispOpt(4): final results (default: 1)

• chkData: the name of an optional checking data set for overfitting
model validation. This data set is a matrix in the same format as the
training data set. When you supply chkData as an input argument,
you must also supply chkFis and chkErr as output arguments.

• optMethod: an optional optimization method used in membership
function parameter training: either 1 for the hybrid method or 0
for the backpropagation method. The default method is the hybrid
method, which is a combination of least-squares estimation with
backpropagation. The default method is invoked whenever the entry
for this argument is anything but 0.

The training process stops whenever the designated epoch number is
reached or the training error goal is achieved.

3-8



anfis

Note When anfis is invoked with two or more arguments, optional
arguments take on their default values if they are entered as NaNs or
empty matrices. Default values can be changed directly by modifying
the file anfis.m. Either NaNs or empty matrices must be used as
placeholders for variables if you do not want to specify them, but
do want to specify succeeding arguments, for example, when you
implement the checking data option of anfis.

The range variables in the previous description for anfis are as follows:

• fis is the FIS structure whose parameters are set according to a
minimum training error criterion.

• error or chkErr is an array of root mean squared errors representing
the training data error signal and the checking data error signal,
respectively. The function only returns chkErr when you supply
chkData as an input argument.

• stepsize is an array of step sizes. The step size is decreased
(by multiplying it with the component of the training option
corresponding to the step size decrease rate) if the error measure
undergoes two consecutive combinations of an increase followed
by a decrease. The step size is increased (by multiplying it with
the increase rate) if the error measure undergoes four consecutive
decreases.

• chkFis is the FIS structure whose parameters are set according to a
minimum checking error criterion. The function only returns chkFis
when you supply chkData as an input argument.

Examples x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
trnData = [x y];
numMFs = 5;
mfType = 'gbellmf';
epoch_n = 20;
in_fis = genfis1(trnData,numMFs,mfType);

3-9



anfis

out_fis = anfis(trnData,in_fis,20);
plot(x,y,x,evalfis(x,out_fis));
legend('Training Data','ANFIS Output');

References Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks
and Kalman Filter Algorithm,” Proc. of the Ninth National Conf. on
Artificial Intelligence (AAAI-91), pp. 762-767, July 1991.

Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.
23, No. 3, pp. 665-685, May 1993.

See Also anfisedit | genfis1

3-10



anfisedit

Purpose Open Anfis Editor

Syntax anfisedit('a')

anfisedit(a)

anfisedit

Description Using anfisedit, you bring up the ANFIS Editor GUI from which you
can load a data set and train anfis. The ANFIS Editor GUI invoked
using anfisedit('a'), opens the ANFIS Editor GUI from which you
can implement anfis using a FIS structure stored as a file a.fis.

anfisedit(a) operates the same way for a FIS structure a, stored as a
variable in the MATLAB workspace.

Refer to “anfis and the ANFIS Editor GUI” on page 2-110 for more
information about how to use anfisedit.

Menu
Items

On the ANFIS Editor GUI, there is a menu bar that allows you to open
related GUI tools, open and save systems, and so on. The File menu is
the same as the one found on the FIS Editor. Refer to fuzzy for more
information:

• Use the following Edit menu item:

Undo to undo the most recent change.

FIS properties to invoke the FIS Editor.

Membership functions to invoke the Membership Function Editor.

Rules to invoke the Rule Editor.

• Use the following View menu items:

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.

See Also fuzzy | mfedit | ruleedit | ruleview | surfview

3-11



convertfis

Purpose Convert Fuzzy Logic Toolbox Version 1.0 Fuzzy Inference System
matrix to current-version Fuzzy Inference System structure

Syntax fis_new=convertfis(fis_old)

Description convertfis takes a Version 1.0 FIS matrix and converts it to a FIS
structure compatible with the current version.

3-12



defuzz

Purpose Defuzzify membership function

Syntax out = defuzz(x,mf,type)

Description defuzz(x,mf,type) returns a defuzzified value out, of a membership
function mf positioned at associated variable value x, using one of
several defuzzification strategies, according to the argument, type. The
variable type can be one of the following:

• centroid: centroid of area

• bisector: bisector of area

• mom: mean value of maximum

• som: smallest (absolute) value of maximum

• lom: largest (absolute) value of maximum

If type is not one of those listed, Fuzzy Logic Toolbox software assumes
it to be a user-defined function. x and mf are passed to this function to
generate the defuzzified output.

Examples x = -10:0.1:10;
mf = trapmf(x,[-10 -8 -4 7]);
xx = defuzz(x,mf,'centroid');

3-13



dsigmf

Purpose Difference between two sigmoidal functions membership function

Syntax y = dsigmf(x,[a1 c1 a2 c2])

Description The sigmoidal membership function used depends on the two
parameters a and c and is given by

f x a c
e a x c

; ,
( )( ) =

+ − −
1

1

The membership function dsigmf depends on four parameters, a1,
c1, a2, and c2, and is the difference between two of these sigmoidal
functions.

f1(x; a1, c1) - f2(x; a2, c2)

The parameters are listed in the order: [a1 c1 a2 c2].

Examples x=0:0.1:10;
y=dsigmf(x,[5 2 5 7]);
plot(x,y)
xlabel('dsigmf, P=[5 2 5 7]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

dsigmf, P = [5 2 5 7]

See Also gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-14



evalfis

Purpose Perform fuzzy inference calculations

Syntax output= evalfis(input,fismat)

output= evalfis(input,fismat, numPts)

[output, IRR, ORR, ARR]= evalfis(input,fismat)

[output, IRR, ORR, ARR]= evalfis(input,fismat,numPts)

Description evalfis has the following arguments:

• input: a number or a matrix specifying input values. If input is an
M-by-N matrix, where N is number of input variables, then evalfis
takes each row of input as an input vector and returns the M-by-L
matrix to the variable, output, where each row is an output vector
and L is the number of output variables.

• fismat: a FIS structure to be evaluated.

• numPts: an optional argument that represents the number of sample
points on which to evaluate the membership functions over the input
or output range. If this argument is not used, the default value of
101 points is used.

The range labels for evalfis are as follows:

• output: the output matrix of size M-by-L, where M represents the
number of input values specified previously, and L is the number
of output variables for the FIS.

The optional range variables for evalfis are only calculated when the
input argument is a row vector, (only one set of inputs is applied).
These optional range variables are

• IRR: the result of evaluating the input values through the
membership functions. This matrix is of the size numRules-by-N,
where numRules is the number of rules, and N is the number of
input variables.

3-15



evalfis

• ORR: the result of evaluating the output values through
the membership functions. This matrix is of the size
numPts-by-numRules*L, where numRules is the number of rules,
and L is the number of outputs. The first numRules columns of this
matrix correspond to the first output, the next numRules columns of
this matrix correspond to the second output, and so forth.

• ARR: the numPts-by-L matrix of the aggregate values sampled at
numPts along the output range for each output.

When it is invoked with only one range variable, this function computes
the output vector, output, of the fuzzy inference system specified by
the structure, fismat, for the input value specified by the number or
matrix, input.

Examples fismat = readfis('tipper');
out = evalfis([2 1; 4 9],fismat)

This syntax generates the response

out =
7.0169
19.6810

See Also ruleview | gensurf

3-16



evalmf

Purpose Generic membership function evaluation

Syntax y = evalmf(x,mfParams,mfType)

Description evalmf evaluates any membership function, where x is the variable
range for the membership function evaluation, mfType is a membership
function from the toolbox, and mfParams are appropriate parameters
for that function.

If you want to create your own custom membership function, evalmf
still works, because it evaluates any membership function whose name
it does not recognize.

Examples x=0:0.1:10;
mfparams = [2 4 6];
mftype = 'gbellmf';
y=evalmf(x,mfparams,mftype);
plot(x,y)
xlabel('gbellmf, P=[2 4 6]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gbellmf, P = [2 4 6]

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trapmf | trimf | zmf

3-17



fcm

Purpose Fuzzy C-means clustering

Syntax [center,U,obj_fcn] = fcm(data,cluster_n)
[center,U,obj_fcn] = fcm(data,cluster_n,options)

Description [center, U, obj_fcn] = fcm(data, cluster_n) applies the fuzzy
c-means clustering method to a given data set.

The input arguments of this function are

• data: data set to be clustered; each row is a sample data point

• cluster_n: number of clusters (greater than one)

The output arguments of this function are

• center: matrix of final cluster centers where each row provides the
center coordinates

• U: final fuzzy partition matrix (or membership function matrix)

• obj_fcn: values of the objective function during iterations

fcm(data,cluster_n,options) uses an additional argument variable,
options, to specify clustering parameters, introduce a stopping criteria,
or set the iteration information display. Specify options as a vector:

• options(1): Exponent for the partition matrix U. Default: 2.0.

• options(2): Maximum number of iterations. Default: 100.

• options(3): Minimum amount of improvement. Default: 1e-5.

• options(4): Information displayed during iteration. Default: 1.

If any entry of options is NaN, the default value for that option is used
instead. The clustering process stops when the maximum number
of iterations is reached or when the objective function improvement
between two consecutive iterations is less than the minimum amount
of improvement specified.

Examples data = rand(100, 2);
[center,U,obj_fcn] = fcm(data, 2);

3-18



fcm

plot(data(:,1), data(:,2),'o');
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
line(data(index1,1),data(index1, 2),'linestyle','none',...

'marker','*','color','g');
line(data(index2,1),data(index2, 2),'linestyle','none',...

'marker', '*','color','r');

3-19



findcluster

Purpose Open Clustering tool

Syntax findcluster findcluster('file.dat')

Description findcluster opens a GUI to implement either the fuzzy c-means (fcm),
the fuzzy subtractive clustering (subtractiv) using the pull-down tab
under Method on the GUI, or both. Data is entered using the Load
Data button. The options for each of these methods are set to default
values. These default values can be changed. See fcm reference page for
a description of the options for fuzzy c-means. The subclust reference
page provides a description of the options for fuzzy subclustering.

This tool works on multidimensional data sets, but only displays two
of those dimensions. Use the pull-down tabs under X-axis and Y-axis
to select which data dimension you want to view. For example, if you
have data that is five-dimensional, this tool labels the data as data_1,
data_2, data_3, data_4, data_5, in the order in which the data appears
in the data set. Start to perform the clustering, and Save Center
to save the cluster center.

When operating on a data set called file.dat, findcluster (file.dat)
loads the data set automatically, plotting up to the first two dimensions
of the data only. You can still choose which two dimensions of the data
you want to cluster after the GUI appears.

3-20



findcluster

Examples findcluster('clusterdemo.dat')

See Also fcm | subclust

3-21



fuzarith

Purpose Perform fuzzy arithmetic

Syntax C = fuzarith(X, A, B, operator)

Description Using interval arithmetic, C = fuzarith(X, A, B, operator) returns
a fuzzy set C as the result of applying the function represented by the
string, operator, which performs a binary operation on the sampled
convex fuzzy sets A and B. The elements of A and B are derived from
convex functions of the sampled universe, X:

• A, B, and X are vectors of the same dimension.

• operator is one of the following strings: 'sum', 'sub', 'prod', and
'div'.

• The returned fuzzy set C is a column vector with the same length as X.

Note Fuzzy addition might generate the message "divide by zero"
but this does not affect the accuracy of this function.

Examples point_n = 101; % Determines MF's resolution

min_x = -20; max_x = 20; % Universe is [min_x, max_x]

x = linspace(min_x, max_x, point_n)';

A = trapmf(x, [-10 -2 1 3]); % Trapezoidal fuzzy set A
B = gaussmf(x, [2 5]); % Gaussian fuzzy set B

C1 = fuzarith(x, A, B, 'sum');

subplot(2,1,1);
plot(x, A, 'b--', x, B, 'm:', x, C1, 'c');
title('fuzzy addition A+B');

C2 = fuzarith(x, A, B, 'sub');

3-22



fuzarith

subplot(2,1,2);
plot(x, A, 'b--', x, B, 'm:', x, C2, 'c');
title('fuzzy subtraction A-B');

C3 = fuzarith(x, A, B, 'prod');

3-23



fuzzy

Purpose Open FIS Editor

Syntax fuzzy

fuzzy(fismat)

Description

The FIS Editor GUI tool allows you to edit the highest level features
of the fuzzy inference system, such as the number of input and output
variables, the defuzzification method used, and so on. Refer to “The FIS
Editor” on page 2-38 for more information about how to use the GUIs
associated with fuzzy.

The FIS Editor is the high-level display for any fuzzy logic inference
system. It allows you to call the various other editors to operate on the
FIS. This interface allows convenient access to all other editors with an
emphasis on maximum flexibility for interaction with the fuzzy system.

3-24



fuzzy

The
Diagram

The diagram displayed at the top of the window shows the inputs,
outputs, and a central fuzzy rule processor. Click one of the variable
boxes to make the selected box the current variable. You should see the
box highlighted in red. Double-click one of the variables to bring up the
Membership Function Editor. Double-click the fuzzy rule processor to
bring up the Rule Editor. If a variable exists but is not mentioned in
the rule base, it is connected to the rule processor block with a dashed
rather than a solid line.

Menu
Items

The FIS Editor displays a menu bar that allows you to open related
GUI tools, open and save systems, and so on.

• Under File select

New FIS > Mamdani to open a new Mamdani-style system with no
variables and no rules called Untitled.

New FIS > Sugeno to open a new Sugeno-style system with no
variables and no rules called Untitled.

Import > From workspace to load a system from a specified FIS
structure variable in the workspace.

Import > From file to load a system from a specified .fis file.

Export > To workspace. to save the system to a FIS structure
variable in the workspace.

Export > To file to save the current system to a .fis file.

Print to print what is displayed in the GUI.

Close to close the GUI.

• Under Edit select

Undo to undo the most recent change.

Add variable > Input to add another input to the current system.

Add variable > Output to add another output to the current system.

Remove Selected Variable to delete a selected variable.

3-25



fuzzy

Membership functions to invoke the Membership Function Editor.

Rules to invoke the Rule Editor.

• Under View select

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.

Inference
Method
Pop-up
Menus

Five pop-up menus are provided to change the functionality of the five
basic steps in the fuzzy implication process:

• And method: Choose min, prod, or Custom, for a custom operation.

• Or method: Choose max, probor (probabilistic or), or Custom, for a
custom operation.

• Implication: Choose min, prod, or Custom, for a custom operation.
This selection is not available for Sugeno-style fuzzy inference.

• Aggregation: Choose max, sum, probor, or Custom, for a custom
operation. This selection is not available for Sugeno-style fuzzy
inference.

• Defuzzification: For Mamdani-style inference, choose centroid,
bisector, mom (middle of maximum), som (smallest of maximum),
lom (largest of maximum), or Custom, for a custom operation. For
Sugeno-style inference, choose between wtaver (weighted average)
or wtsum (weighted sum).

See Also mfedit | ruleedit | ruleview | surfview | anfisedit

3-26



gauss2mf

Purpose Gaussian combination membership function

Syntax y = gauss2mf(x,[sig1 c1 sig2 c2])

Description The Gaussian function depends on two parameters sig and c as given by

f x c e
x c

; ,σ σ( ) =
− −( )2

22

The function gauss2mf is a combination of two of these two parameters.
The first function, specified by sig1 and c1, determines the shape of the
left-most curve. The second function specified by sig2 and c2 determines
the shape of the right-most curve. Whenever c1 < c2, the gauss2mf
function reaches a maximum value of 1. Otherwise, the maximum value
is less than one. The parameters are listed in the order:

[sig1, c1, sig2, c2] .

Examples x = (0:0.1:10)';
y1 = gauss2mf(x, [2 4 1 8]);
y2 = gauss2mf(x, [2 5 1 7]);
y3 = gauss2mf(x, [2 6 1 6]);
y4 = gauss2mf(x, [2 7 1 5]);
y5 = gauss2mf(x, [2 8 1 4]);
plot(x, [y1 y2 y3 y4 y5]);
set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off');

3-27



gauss2mf

See Also dsigmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-28



gaussmf

Purpose Gaussian curve membership function

Syntax y = gaussmf(x,[sig c])

Description The symmetric Gaussian function depends on two parameters σ and c
as given by

f x c e
x c

; ,σ σ( ) =
− −( )2

22

The parameters for gaussmf represent the parameters σ and c listed in
order in the vector [sig c].

Examples x=0:0.1:10;
y=gaussmf(x,[2 5]);
plot(x,y)
xlabel('gaussmf, P=[2 5]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gaussmf, P = [2 5]

See Also dsigmf | gaussmf | gbellmf | evalmf | mf2mf | pimf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-29



gbellmf

Purpose Generalized bell-shaped membership function

Syntax y = gbellmf(x,params)

Description The generalized bell function depends on three parameters a, b, and c
as given by

f x a b c
x c

a

b
; , ,( ) =

+ −

1

1
2

where the parameter b is usually positive. The parameter c locates the
center of the curve. Enter the parameter vector params, the second
argument for gbellmf, as the vector whose entries are a, b, and c,
respectively.

Examples x=0:0.1:10;
y=gbellmf(x,[2 4 6]);
plot(x,y)
xlabel('gbellmf, P=[2 4 6]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

gbellmf, P = [2 4 6]

See Also dsigmf | gaussmf | gauss2mf | evalmf | mf2mf | pimf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-30



genfis1

Purpose Generate Fuzzy Inference System structure from data using grid
partition

Syntax fismat = genfis1(data)

fismat = genfis1(data,numMFs,inmftype,outmftype)

Description genfis1 generates a Sugeno-type FIS structure used as initial
conditions (initialization of the membership function parameters) for
anfis training.

genfis1(data) generates a single-output Sugeno-type fuzzy inference
system using a grid partition on the data.

genfis1(data,numMFs,inmftype,outmftype) generates a FIS
structure from a training data set, data, with the number and type
of input membership functions and the type of output membership
functions explicitly specified.

The arguments for genfis1 are as follows:

• data is the training data matrix, which must be entered with all
but the last columns representing input data, and the last column
representing the single output.

• numMFs is a vector whose coordinates specify the number of
membership functions associated with each input. If you want the
same number of membership functions to be associated with each
input, then specify numMFs as a single number.

• inmftype is a string array in which each row specifies the
membership function type associated with each input. This can be
a one-dimensional single string if the type of membership functions
associated with each input is the same.

• outmftype is a string that specifies the membership function type
associated with the output. There can only be one output, because
this is a Sugeno-type system. The output membership function type
must be either linear or constant. The number of membership

3-31



genfis1

functions associated with the output is the same as the number of
rules generated by genfis1.

The default number of membership functions, numMFs, is 2; the default
input membership function type is 'gbellmf'; and the default output
membership function type is 'linear'. These are used whenever
genfis1 is invoked without the last three arguments.

The following table summarizes the default inference methods.

Inference Method Default

AND prod

OR max

Implication prod

Aggregation max

Defuzzification wtaver

Examples data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];
numMFs = [3 7];
mfType = char('pimf','trimf');
fismat = genfis1(data,numMFs,mfType);
[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf);
xlabel('input 1 (pimf)');
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf);
xlabel('input 2 (trimf)');

3-32



genfis1

showfis(fismat) displays the contents of each field of the structure
fismat.

See Also anfis | genfis2 | genfis3

3-33



genfis2

Purpose Generate Fuzzy Inference System structure from data using subtractive
clustering

Syntax fismat = genfis2(Xin,Xout,radii)

fismat = genfis2(Xin,Xout,radii,xBounds)

fismat = genfis2(Xin,Xout,radii,xBounds,options)
fismat = genfis2(Xin,Xout,radii,xBounds,options,user_centers)

Description genfis2 generates a Sugeno-type FIS structure using subtractive
clustering and requires separate sets of input and output data as input
arguments. When there is only one output, genfis2 may be used to
generate an initial FIS for anfis training. genfis2 accomplishes this
by extracting a set of rules that models the data behavior.

The rule extraction method first uses the subclust function to
determine the number of rules and antecedent membership functions
and then uses linear least squares estimation to determine each rule’s
consequent equations. This function returns a FIS structure that
contains a set of fuzzy rules to cover the feature space.

The arguments for genfis2 are as follows:

• Xin is a matrix in which each row contains the input values of a
data point.

• Xout is a matrix in which each row contains the output values of a
data point.

• radii is a vector that specifies a cluster center’s range of influence
in each of the data dimensions, assuming the data falls within a
unit hyperbox.

For example, if the data dimension is 3 (e.g., Xin has two columns
and Xout has one column), radii = [0.5 0.4 0.3] specifies that the
ranges of influence in the first, second, and third data dimensions
(i.e., the first column of Xin, the second column of Xin, and the
column of Xout) are 0.5, 0.4, and 0.3 times the width of the data
space, respectively. If radii is a scalar value, then this scalar value

3-34



genfis2

is applied to all data dimensions, i.e., each cluster center has a
spherical neighborhood of influence with the given radius.

• xBounds is a 2-by-N optional matrix that specifies how to map the
data in Xin and Xout into a unit hyperbox, where N is the data (row)
dimension. The first row of xBounds contains the minimum axis
range values and the second row contains the maximum axis range
values for scaling the data in each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies that data values in
the first data dimension are to be scaled from the range [-10 +10] into
values in the range [0 1]; data values in the second data dimension
are to be scaled from the range [0 50]; and data values in the third
data dimension are to be scaled from the range [-1 +1]. If xBounds
is an empty matrix or not provided, then xBounds defaults to the
minimum and maximum data values found in each data dimension.

• options is an optional vector for specifying algorithm parameters
to override the default values. These parameters are explained in
the help text for subclust. Default values are in place when this
argument is not specified.

• user_centers is an optional matrix for specifying custom cluster
centers. user_centers has a size of J-by-N where J is the number of
clusters and N is the total number of inputs and outputs.

The default input membership function type is 'gaussmf', and the
default output membership function type is 'linear'.

The following table summarizes the default inference methods.

Inference Method Default

AND prod

OR probor

Implication prod

Aggregation max

Defuzzification wtaver

3-35



genfis2

Examples The following example uses the genfis2 function with the minimum
number of arguments and generates a FIS with default values. In this
case, a range of influence of 0.5 is specified for all data dimensions.

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5);

showfis(fismat) displays the contents of each field of the structure
fismat.

To plot the input membership functions, type

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf);
xlabel('Membership Functions for input 1');
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf);
xlabel('Membership Functions for input 2');

3-36



genfis2

The following example assumes the combined data dimension is 3.
Suppose Xin has two columns and Xout has one column, then 0.5 and
0.25 are the ranges of influence for each of the Xin data dimensions, and
0.3 is the range of influence for the Xout data dimension.

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,[0.5 0.25 0.3])

3-37



genfis2

The following example specifies how to normalize the data in Xin and
Xout into values in the range [0 1] for processing. Suppose Xin has two
columns and Xout has one column, then the data in the first column of
Xin are scaled from [-10 +10], the data in the second column of Xin are
scaled from [-5 +5], and the data in Xout are scaled from [0 20].

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5,[-10 -5 0; 10 5 20])

See Also subclust | genfis1 | genfis3 | anfis

3-38



genfis3

Purpose Generate Fuzzy Inference System structure from data using FCM
clustering

Syntax fismat = genfis3(Xin,Xout)

fismat = genfis3(Xin,Xout,type)

fismat = genfis3(Xin,Xout,type,cluster_n)
fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions)

Description genfis3 generates a FIS using fuzzy c-means (FCM) clustering by
extracting a set of rules that models the data behavior. The function
requires separate sets of input and output data as input arguments.
When there is only one output, you can use genfis3 to generate an
initial FIS for anfis training. The rule extraction method first uses
the fcm function to determine the number of rules and membership
functions for the antecedents and consequents.

fismat = genfis3(Xin,Xout) generates a Sugeno-type FIS structure
(fismat) given input data Xin and output data Xout. The matrices Xin
and Xout have one column per FIS input and output, respectively.

fismat = genfis3(Xin,Xout,type) generates a FIS structure of the
specified type, where type is either 'mamdani' or 'sugeno'.

fismat = genfis3(Xin,Xout,type,cluster_n) generates a FIS
structure of the specified type and allows you to specify the number of
clusters (cluster_n) to be generated by FCM.

The number of clusters determines the number of rules and membership
functions in the generated FIS. cluster_n must be an integer or
'auto'. When cluster_n is 'auto', the function uses the subclust
algorithm with a radii of 0.5 and the minimum and maximum values of
Xin and Xout as xBounds to find the number of clusters. See subclust
for more information.

fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions)
generates a FIS structure of the specified type and number of clusters
and uses the specified fcmoptions for the FCM algorithm. If you omit

3-39



genfis3

fcmoptions, the function uses the default FCM values. See fcm for
information about these parameters.

The input membership function type defaults to 'gaussmf', and the
output membership function type defaults to 'linear'.

The following table summarizes the default inference methods.

Inference Method Default

AND prod

OR probor

Implication prod

Aggregation sum

Defuzzification wtaver

Examples The following example uses the genfis3 function with the minimum
number of arguments and generates a FIS using default values.

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fismat = genfis3(Xin,Xout);

showfis(fismat) displays the contents of each field of the structure
fismat.

To plot the input membership functions, type

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf);
xlabel('Membership Functions for input 1');
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf);
xlabel('Membership Functions for input 2');

3-40



genfis3

The following example generates a Mamdani FIS with three clusters.

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fismat = genfis3(Xin,Xout,'mamdani',3)

3-41



genfis3

The following example specifies the type of FIS, the number of desired
clusters and FCM options.

Xin1 = 7*rand(50,1);
Xin2 = 20*rand(50,1)-10;
Xin = [Xin1 Xin2];
Xout = 5*rand(50,1);
fis = genfis3(Xin,Xout,'mamdani',3,[2,100,1e-5,1])

See Also anfis | fcm | genfis1 | genfis2

3-42



gensurf

Purpose Generate Fuzzy Inference System output surface

Syntax gensurf(fis)
gensurf(fis,inputs,output)
gensurf(fis,inputs,output,grids)
gensurf(fis,inputs,output,grids,refinput)
gensurf(fis,inputs,output,grids,refinput,numofpoints)
[x,y,z]=gensurf(...)

Description gensurf(fis) generates a plot of the output surface of a given fuzzy
inference system (fis) using the first two inputs and the first output.

gensurf(fis,inputs,output) generates a plot using the inputs (one or
two) and output (only one is allowed) given, respectively, by the vector,
inputs, and the scalar, output.

gensurf(fis,inputs,output,grids) allows you to specify the number
of grids in the X (first, horizontal) and Y (second, vertical) directions.
If grids is a two element vector, you can set the grids in the X and Y
directions independently.

gensurf(fis,inputs,output,grids,refinput) allows you to specify
a reference input, and can be used if there are more than two outputs.
The length of the vector refinput is the same as the number of inputs:

• Enter NaNs for the entries of refinput corresponding to the inputs
whose surface is being displayed.

• Enter real double scalars to fix the values of other inputs.

gensurf(fis,inputs,output,grids,refinput,numofpoints) allows
you to specify the number of sample points on which to evaluate the
membership functions in the input or output range. If numofpoints is
not specified, a default value of 101 is used.

[x,y,z]=gensurf(...) returns the variables that define the output
surface and suppresses automatic plotting.

Examples a = readfis('tipper');
gensurf(a)

3-43



gensurf

0
2

4
6

8
10

0

2

4

6

8

10
5

10

15

20

25

servicefood

tip

a = gensurf(Temp,[1 2],1,[20 20],[nan nan 0.2]);

This equation generates the surface of a three-input FIS named Temp
from its first two inputs to its first output, while fixing a reference value
for the third input at .2.

See Also evalfis | surfview

3-44



getfis

Purpose Get fuzzy system properties

Syntax getfis(a)

getfis(a,'fisprop')

getfis(a, 'vartype', varindex)

getfis(a,'vartype',varindex,'varprop')

getfis(a,'vartype',varindex,'mf',mfindex)

getfis(a,'vartype',varindex,'mf',mfindex,'mfprop')

Description This function provides the fundamental access for the FIS structure.
With this one function you can learn about every part of the fuzzy
inference system.

The arguments for getfis are as follows:

• a: the name of a workspace variable FIS structure.

• 'fisprop': a string indicating the field you want to access. Possible
fields include:

'name'

'type'

'numinputs'

'numoutputs'

'numinputmfs'

'numoutputmfs'

'numrules'

'andmethod'

'ormethod'

3-45



getfis

'impmethod'

'aggmethod'

'defuzzmethod'

'inlabels'

'outlabels'

'inrange'

'outrange'

'inmfs'

'outmfs'

'inmflabels'

'outmflabels'

'inmftypes'

'outmftypes'

'inmfparams'

'outmfparams'

'rulelist'

'Name' or 'NumInputs'.

• 'vartype': a string indicating the type of variable you want (either
input or output).

• varindex: an integer indicating the index of the variable you want
(1, for input 1, for example).

• 'varprop': a string indicating the variable property you want.
Possible strings are name, range, nummfs, and mflabels. See the
examples for sample string names.

• 'mf': a required string that indicates you are searching for
membership function information.

3-46



getfis

• mfindex: the index of the membership function for which you are
seeking information.

• 'mfprop': a string indicating values for membership function
properties. Possible strings arename, type, and params.

You can also access fuzzy system properties directly using MATLAB
syntax for structures (including dot notation). See the examples that
follow.

Examples One input argument (output is the empty set)

a = readfis('tipper');
getfis(a)

Name = tipper
Type = mamdani
NumInputs = 2
InLabels =

service
food

NumOutputs = 1
OutLabels =

tip
NumRules = 3
AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

Two input arguments

getfis(a,'type')
ans =
mamdani

or

a.type

3-47



getfis

ans =
mamdani

Three input arguments (output is the empty set)

getfis(a,'input',1)
Name = service
NumMFs = 3
MFLabels =

poor
good
excellent

Range = [0 10]

or

a.input(1)
ans =

name: 'service'
range: [0 10]

mf: [1x3 struct]

Four input arguments

getfis(a,'input',1,'name')
ans =
service

or

a.input(1).name
ans =
service

Five input arguments

getfis(a,'input',1,'mf',2)
Name = good

3-48



getfis

Type = gaussmf
Params =

1.5000 5.0000

or

a.input(1).mf(2)
ans =

name: 'good'
type: 'gaussmf'

params: [1.5000 5]

Six input arguments

getfis(a,'input',1,'mf',2,'name')
ans =
good

or

a.input(1).mf(2).name
ans =
good

See Also setfis | showfis

3-49



mam2sug

Purpose Transform Mamdani Fuzzy Inference System into Sugeno Fuzzy
Inference System

Syntax sug_fis=mam2sug(mam_fis)

Description mam2sug (mam_fis)transforms a (not necessarily a single output)
Mamdani FIS structure mam_fis into a Sugeno FIS structure sug_fis.
The returned Sugeno system has constant output membership
functions. These constants are determined by the centroids of the
consequent membership functions of the original Mamdani system. The
antecedent remains unchanged.

Examples mam_fismat = readfis('mam22.fis');
sug_fismat = mam2sug(mam_fismat);
subplot(2,2,1); gensurf(mam_fismat, [1 2], 1);
title('Mamdani system (Output 1)');
subplot(2,2,2); gensurf(sug_fismat, [1 2], 1);
title('Sugeno system (Output 1)');
subplot(2,2,3); gensurf(mam_fismat, [1 2],2);
title('Mamdani system (Output 2)');
subplot(2,2,4); gensurf(sug_fismat, [1 2],2);
title('Sugeno system (Output 2)');

3-50



mf2mf

Purpose Translate parameters between membership functions

Syntax outParams = mf2mf(inParams,inType,outType)

Description This function translates any built-in membership function type into
another, in terms of its parameter set. In principle, mf2mf mimics the
symmetry points for both the new and old membership functions.

Caution

Occasionally this translation results in lost information, so that if the
output parameters are translated back into the original membership
function type, the transformed membership function does not look the
same as it did originally.

The input arguments for mf2mf are as follows:

• inParams: the parameters of the membership function you are
transforming

• inType: a string name for the type of membership function you are
transforming

• outType: a string name for the new membership function you are
transforming to

Examples x=0:0.1:5;
mfp1 = [1 2 3];
mfp2 = mf2mf(mfp1,'gbellmf','trimf');
plot(x,gbellmf(x,mfp1),x,trimf(x,mfp2))

3-51



mf2mf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | pimf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-52



mfedit

Purpose Open Membership Function Editor

Syntax mfedit('a')

mfedit(a)

mfedit

Description

mfedit('a') generates a membership function editor that allows you to
inspect and modify all the membership functions for your FIS stored in
the file, a.fis.

mfedit(a) operates on a MATLAB workspace variable, for a FIS
structure, a.

mfedit alone opens the membership function editor with no FIS loaded.

For each membership function you can change the name, the type, and
the parameters. Eleven built-in membership functions are provided for
you to choose from, although of course you can always create your own

3-53



mfedit

specialized versions. Refer to “The Membership Function Editor” on
page 2-43 for more information about how to use mfedit.

Select the icon for the variable on the upper left side of the diagram
(under FIS Variables) to display its associated membership functions
in the plot region. Select membership functions by clicking once on
them or their labels.

Menu
Items

On the Membership Function Editor, there is a menu bar that allows
you to open related GUI tools, open and save systems, and so on. The
File menu for the Membership Function Editor is the same as the one
found on the FIS Editor. Refer to “The Membership Function Editor” on
page 2-43 for more information.

• Under Edit, select:

Undo to undo the most recent change.

Add MFs to add membership functions to the current variable.

Add Custom MF to add a customized membership function to the
current variable.

Remove Selected MF to delete the current membership function.

Remove All MFs to delete all membership functions of the current
variable.

FIS properties to invoke the FIS Editor.

Rules to invoke the Rule Editor.

• Under View, select:

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.

Membership
Function
Pop-up
Menu

There are 11 built-in membership functions to choose from, and you also
have the option of installing a customized membership function.

3-54



mfedit

See Also fuzzy | ruleedit | ruleview | surfview

3-55



newfis

Purpose Create new Fuzzy Inference System

Syntax a=newfis(fisName,fisType,andMethod,orMethod,impMethod,
...

aggMethod,defuzzMethod)

Description This function creates new FIS structures. newfis has up to seven input
arguments, and the output argument is a FIS structure. The seven
input arguments are as follows:

• fisName is the string name of the FIS structure, fisName.fis you
create.

• fisType is the type of FIS.

• andMethod, orMethod, impMethod, aggMethod, and defuzzMethod,
respectively, provide the methods for AND, OR, implication,
aggregation, and defuzzification.

Examples The following example shows what the defaults are for each of the
methods.

a=newfis('newsys');
getfis(a)

returns

Name = newsys
Type = mamdani
NumInputs = 0
InLabels =
NumOutputs = 0
OutLabels =
NumRules 0
AndMethod min
OrMethod max
ImpMethod min

3-56



newfis

AggMethod max
DefuzzMethod centroid

ans =
[newsys]

See Also readfis | writefis

3-57



parsrule

Purpose Parse fuzzy rules

Syntax fis2 = parsrule(fis,txtRuleList)

fis2 = parsrule(fis,txtRuleList,ruleFormat)

fis2 = parsrule(fis,txtRuleList,ruleFormat,lang)

Description This function parses the text that defines the rules (txtRuleList) for
a MATLAB workspace FIS variable, fis, and returns a FIS structure
with the appropriate rule list in place. If the original input FIS
structure, fis, has any rules initially, they are replaced in the new
structure, fis2.

Three different rule formats (indicated by ruleFormat) are supported:
'verbose', 'symbolic', and 'indexed'. The default format is
'verbose'. When the optional language argument, lang, is used, the
rules are parsed in verbose mode, assuming the key words are in the
language, lang. This language must be either ’'english', 'francais',
or 'deutsch'. The key language words in English are if, then, is, AND,
OR, and NOT.

Examples a = readfis('tipper');
ruleTxt = 'if service is poor then tip is generous';
a2 = parsrule(a,ruleTxt,'verbose');
showrule(a2)
ans =
1. If (service is poor) then (tip is generous) (1)

See Also addrule | ruleedit | showrule

3-58



pimf

Purpose Π-shaped membership function

Syntax y = pimf(x,[a b c d])

Description This spline-based curve is so named because of its Π shape. The
membership function is evaluated at the points determined by the
vector x. The parameters a and d locate the "feet" of the curve, while b
and c locate its "shoulders." The membership function is a product of
smf and zmf membership functions, and is given by:

f x a b c d

x a

x a
b a

a x
a b

x b
b a

( ; , , , )

,

,

-
,

=

≤

−
−

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ +

− −⎛
⎝⎜

⎞
⎠⎟

0

2
2

2

1 2
2 aa b

x b

b x c

x c
d c

c x
c d

x d
d c

+ ≤ ≤

≤ ≤

− −
−

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ +

−⎛
⎝⎜

⎞

2
1

1 2
2

,

,

-

2

   

   2
⎠⎠⎟

+ ≤ ≤

≥

⎧

⎨

⎪
⎪
⎪

2

     

                              

,

,

c d
x d

x d
2

0

⎪⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

Examples x=0:0.1:10;
y=pimf(x,[1 4 5 10]);
plot(x,y)
xlabel('pimf, P=[1 4 5 10]')

3-59



pimf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

pimf, P = [1 4 5 10]

See Also dsigmf | evalmf | gauss2mf | gaussmf | gbellmf | mf2mf | psigmf |
sigmf | smf | trapmf | trimf | zmf

3-60



plotfis

Purpose Plot Fuzzy Inference System

Syntax plotfis(fismat)

Description This function displays a high level diagram of a FIS, fismat. Inputs
and their membership functions appear to the left of the FIS structural
characteristics, while outputs and their membership functions appear
on the right.

Examples a = readfis('tipper');
plotfis(a)

See Also evalmf | plotmf

3-61



plotmf

Purpose Plot all membership functions for given variable

Syntax plotmf(fismat,varType,varIndex)

Description This function plots all of the membership functions in the FIS called
fismat associated with a given variable whose type and index are
respectively given by varType (must be 'input' or 'output'), and
varIndex. This function can also be used with the MATLAB function,
subplot.

Examples a = readfis('tipper');
plotmf(a,'input',1)

See Also evalmf | plotfis

3-62



probor

Purpose Probabilistic OR

Syntax y = probor(x)

Description y = probor(x) returns the probabilistic OR (also known as the
algebraic sum) of the columns of x. if x has two rows such that x = [a;
b], then y = a + b - ab. If x has only one row, then y = x.

Examples x = (0:0.1:10);
figure('Name','Probabilistic OR','NumberTitle','off');
y1 = gaussmf(x, [0.5 4]);
y2 = gaussmf(x, [2 7]);
yy = probor([y1; y2]);
plot(x,[y1; y2; yy])

3-63



psigmf

Purpose Product of two sigmoidal membership functions

Syntax y = psigmf(x,[a1 c1 a2 c2])

Description The sigmoid curve plotted for the vector x depends on two parameters
a and c as given by

f x a c
e a x c

( ; , )
( )

=
+ − −

1

1

psigmf is simply the product of two such curves plotted for the values
of the vector x

f1(x; a1, c1) × f2(x; a2, c2)

The parameters are listed in the order [a1 c1 a2 c2].

Examples x=0:0.1:10;
y=psigmf(x,[2 3 -5 8]);
plot(x,y)
xlabel('psigmf, P=[2 3 -5 8]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

psigmf, P = [2 3 −5 8]

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
sigmf | smf | trapmf | trimf | zmf

3-64



readfis

Purpose Load Fuzzy Inference System from file

Syntax fismat = readfis('filename')
fismat = readfis

Description fismat = readfis('filename') reads a fuzzy inference system from
a file and imports the resulting file into the workspace. The file must
be named filename.fis.

fismat = readfis opens a dialog box for retrieving files to select the
fuzzy inference system file.

Examples fismat = readfis('tipper');
getfis(fismat)

returns

Name = tipper
Type = mamdani
NumInputs = 2
InLabels =
service
food

NumOutputs = 1
OutLabels =
tip

NumRules = 3
AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

ans =
tipper

See Also writefis

3-65



rmmf

Purpose Remove membership function from Fuzzy Inference System

Syntax fis = rmmf(fis,'varType',varIndex,'mf',mfIndex)

Description fis = rmmf(fis,varType,varIndex,'mf',mfIndex) removes the
membership function, mfIndex, of variable type varType, of index
varIndex, from the fuzzy inference system associated with the
workspace FIS structure, fis:

• The string varType must be 'input' or 'output'.

• varIndex is an integer for the index of the variable. This index
represents the order in which the variables are listed.

• The argument 'mf' is a string representing the membership function.

• mfIndex is an integer for the index of the membership function.
This index represents the order in which the membership functions
are listed.

Examples a = newfis('mysys');
a = addvar(a,'input','temperature',[0 100]);
a = addmf(a,'input',1,'cold','trimf',[0 30 60]);
getfis(a,'input',1)

returns

Name = temperature
NumMFs = 1
MFLabels =

cold
Range = [0 100]

b = rmmf(a,'input',1,'mf',1);
getfis(b,'input',1)

returns

Name = temperature
NumMFs = 0

3-66



rmmf

MFLabels =
Range = [0 100]

See Also addmf | addrule | addvar | plotmf | rmvar

3-67



rmvar

Purpose Remove variables from Fuzzy Inference System

Syntax fis2 = rmvar(fis,'varType',varIndex)

[fis2,errorStr] = rmvar(fis,'varType',varIndex)

Description fis2 = rmvar(fis,'varType',varIndex) removes the variable
'varType', of index varIndex, from the fuzzy inference system
associated with the workspace FIS structure, fis:

• The string varType must be 'input' or 'output'.

• varIndex is an integer for the index of the variable. This index
represents the order in which the variables are listed.

[fis2,errorStr] = rmvar(fis,'varType',varIndex) returns any
error messages to the string, errorStr.

This command automatically alters the rule list to keep its size
consistent with the current number of variables. You must delete from
the FIS any rule that contains a variable you want to remove, before
removing it. You cannot remove a fuzzy variable currently in use in
the rule list.

Examples a = newfis('mysys');
a = addvar(a,'input','temperature',[0 100]);
getfis(a)

returns

Name = mysys
Type = mamdani
NumInputs = 1
InLabels =

temperature
NumOutputs = 0
OutLabels =
NumRules = 0
AndMethod = min

3-68



rmvar

OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

ans =
mysys
b = rmvar(a,'input',1);
getfis(b)

returns

Name = mysys
Type = mamdani
NumInputs = 0
InLabels =
NumOutputs = 0
OutLabels =
NumRules = 0

AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

ans =
mysys

See Also addmf | addrule | addvar | rmmf

3-69



ruleedit

Purpose Open Rule Editor

Syntax ruleedit('a')

ruleedit(a)

Description The Rule Editor, when invoked using ruleedit('a'), is used to modify
the rules of a FIS structure stored in a file, a.fis. It can also be used to
inspect the rules being used by a fuzzy inference system.

To use this editor to create rules, you must first define all of the input
and output variables you want to use with the FIS editor. You can
create the rules using the listbox and check box choices for input and
output variables, connections, and weights. Refer to “The Rule Editor”
on page 2-53 for more information about how to use ruleedit.

The syntax ruleedit(a) is used when you want to operate on a
workspace variable for a FIS structure called a.

Menu
Items

On the Rule Editor, there is a menu bar that allows you to open related
GUI tools, open and save systems, and so on. The File menu for the
Rule Editor is the same as the one found on the FIS Editor. Refer to
fuzzy for more information:

• Use the following Edit menu item:

Undo to undo the most recent change.

FIS properties to invoke the FIS Editor.

Membership functions to invoke the Membership Function Editor.

• Use the following View menu items:

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.

• Use the Options menu items:

Language to select the language: English, Deutsch, and Francais

3-70



ruleedit

Format to select the format:

Verbose uses the words "if," "then," "AND," "OR," and so on to create
actual sentences.

Symbolic substitutes some symbols for the words used in the verbose
mode. For example, “if A AND B then C” becomes “A & B => C.”

Indexed mirrors how the rule is stored in the FIS structure.

See Also addrule | fuzzy | mfedit | parsrule | ruleview | showrule |
surfview

3-71



ruleview

Purpose Open Rule Viewer

Syntax ruleview('a')

Description

The Rule Viewer invoked using ruleview('a') depicts the fuzzy
inference diagram for a FIS stored in a file, a.fis. It is used to view
the entire implication process from beginning to end. You can move
around the line indices that correspond to the inputs and then watch
the system readjust and compute the new output. Refer to “The Rule
Viewer” on page 2-57 for more information about how to use ruleview.

Menu
Items

On the Rule Viewer, there is a menu bar that allows you to open related
GUI tools, open and save systems, and so on. The File menu for the
Rule Viewer is the same as the one found on the FIS Editor. Refer to
fuzzy for more information.

• Use the Edit menu items:

Undo to undo the most recent action

FIS properties to invoke the FIS Editor

3-72



ruleview

Membership functions to invoke the Membership Function Editor

Rules to invoke the Rule Editor

• Use the View menu item:

Surface to invoke the Surface Viewer

• Use the Options menu item:

Format to set the format in which the rule appears: Verbose,
Symbolic, or Indexed.

If you click on the rule numbers on the left side of the fuzzy inference
diagram, the rule associated with that number appears in the Status
Bar at the bottom of the Rule Viewer.

See Also fuzzy | mfedit | ruleedit | surfview

3-73



setfis

Purpose Set fuzzy system properties

Syntax a = setfis(a,'fispropname','newfisprop')

a = setfis(a,'vartype',varindex,'varpropname','newvarprop')

a = setfis(a,'vartype',varindex,'mf',mfindex,
...

'mfpropname','newmfprop');

Description The command setfis can be called with three, five, or seven input
arguments, depending on whether you want to set a property of the
entire FIS structure, for a particular variable belonging to that FIS
structure, or for a particular membership function belonging to one of
those variables. The arguments are:

• a — a variable name of a FIS from the workspace

• 'vartype'— a string indicating the variable type: input or output

• varindex— the index of the input or output variable

• 'mf' — a required string for the fourth argument of a
seven-argument call for setfis, indicating this variable is a
membership function

• mfindex — the index of the membership function belonging to the
chosen variable

• 'fispropname' — a string indicating the property of the FIS field
you want to set: name, type, andmethod, ormethod, impmethod,
aggmethod, defuzzmethod

• 'newfisprop'— a string describing the name of the FIS property or
method you want to set

• 'varpropname'— a string indicating the name of the variable field
you want to set: name or range

3-74



setfis

• 'newvarprop' — a string describing the name of the variable you
want to set (for name), or an array describing the range of that
variable (for range)

• ’mfpropname’ — a string indicating the name of the membership
function field you want to set: name, type, or params.

• ’newmfprop’ — a string describing the name or type of the
membership function field want to set (for name or type), or an array
describing the range of the parameters (for params)

Examples setfsi is called with three arguments:

a = readfis('tipper');
a2 = setfis(a, 'name', 'eating');
getfis(a2, 'name');

which results in

out =
eating

If it is used with five arguments, setfis updates two variable
properties.

a2 = setfis(a,'input',1,'name','help');
getfis(a2,'input',1,'name')
ans =
help

If used with seven arguments, setfis updates any of several
membership function properties.

a2 = setfis(a,'input',1,'mf',2,'name','wretched');
getfis(a2,'input',1,'mf',2,'name')
ans =
wretched

3-75



setfis

See Also getfis

3-76



showfis

Purpose Display annotated Fuzzy Inference System

Syntax showfis(fismat)

Description showfis(fismat) prints a version of the MATLAB workspace variable
FIS, fismat, allowing you to see the significance and contents of each
field of the structure.

Examples a = readfis('tipper');
showfis(a)

Returns:

1. Name tipper
2. Type mamdani
3. Inputs/Outputs [2 1]
4. NumInputMFs [3 2]
5. NumOutputMFs 3
6. NumRules 3
7. AndMethod min
8. OrMethod max
9. ImpMethod min
10. AggMethod max
11. DefuzzMethod centroid
12. InLabels service
13. food
14. OutLabels tip
15. InRange [0 10]
16. [0 10]
17. OutRange [0 30]
18. InMFLabels poor
19. good
20. excellent
21. rancid
22. delicious
23. OutMFLabels cheap

3-77



showfis

24. average
25. generous
26. InMFTypes gaussmf
27. gaussmf
28. gaussmf
29. trapmf
30. trapmf
31. OutMFTypes trimf
32. trimf
33. trimf
34. InMFParams [1.5 0 0 0]
35. [1.5 5 0 0]
36. [1.5 10 0 0]
37. [0 0 1 3]
38. [7 9 10 10]
39. OutMFParams [0 5 10 0]
40. [10 15 20 0]
41. [20 25 30 0]
42. Rule Antecedent [1 1]
43. [2 0]
44. [3 2]
42. Rule Consequent 1
43. 2
44. 3
42. Rule Weight 1
43. 1
44. 1
42. Rule Connection 2
43. 1
44. 2

See Also getfis

3-78



showrule

Purpose Display Fuzzy Inference System rules

Syntax showrule(fis)

showrule(fis,indexList)

showrule(fis,indexList,format)

showrule(fis,indexList,format,Lang)

Description This command is used to display the rules associated with a given
system. It can be invoked with one to four arguments. The first
argument, fis, is required. This argument is the MATLAB workspace
variable name for a FIS structure. The second (optional) argument
indexList is the vector of rules you want to display. The third
argument (optional) is the string representing the format in which
the rules are returned. showrule can return the rule in any of three
different formats: 'verbose' (the default mode, for which English is
the default language), 'symbolic', and 'indexed', for membership
function index referencing.

When used with four arguments, the forth argument must be verbose,
and showrule(fis,indexList,format,Lang) displays the rules in the
language given by lang, which must be either 'english', 'francais',
or 'deutsch'.

Examples a = readfis('tipper');
showrule(a,1)
ans =
1. If (service is poor) or (food is rancid)

then (tip is cheap) (1)

showrule(a,2)
ans =
2. If (service is good) then (tip is average) (1)

showrule(a,[3 1],'symbolic')

3-79



showrule

ans =
3. (service==excellent) | (food==delicious) =>

(tip=generous) (1)
1. (service==poor) | (food==rancid) => (tip=cheap) (1)

showrule(a,1:3,'indexed')
ans =
1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

See Also addrule | parsrule | ruleedit

3-80



sigmf

Purpose Sigmoidal membership function

Syntax y = sigmf(x,[a c])

Description The sigmoidal function, sigmf(x,[a c]), as given in the following
equation by f(x,a,c) is a mapping on a vector x, and depends on two
parameters a and c.

f x a c
e a x c

, ,( ) =
+ − −( )

1

1

Depending on the sign of the parameter a, the sigmoidal membership
function is inherently open to the right or to the left, and thus is
appropriate for representing concepts such as “very large” or “very
negative.” More conventional-looking membership functions can be built
by taking either the product or difference of two different sigmoidal
membership functions. For more information seedsigmf and psigmf.

Examples x=0:0.1:10;
y=sigmf(x,[2 4]);
plot(x,y)
xlabel('sigmf, P=[2 4]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

sigmf, P = [2 4]

3-81



sigmf

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trapmf | trimf | zmf

3-82



smf

Purpose S-shaped membership function

Syntax y = smf(x,[a b])

Description This spline-based curve is a mapping on the vector x, and is named
because of its S-shape. The parameters a and b locate the extremes of
the sloped portion of the curve, as given by:

f x a b

x a

x a
b a

a x
a b

x b
b a

a b
( ; , )

,

,

-
-

,

=

≤

−
−

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ +

−⎛
⎝⎜

⎞
⎠⎟

+

0

2
2

2

2

1 2
2

≤≤ ≤

≥

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

x b

x b1,

Examples x=0:0.1:10;
y=smf(x,[1 8]);
plot(x,y)
xlabel('smf, P=[1 8]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

smf, P = [1 8]

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trapmf | trimf | zmf

3-83



subclust

Purpose Find cluster centers with subtractive clustering

Syntax [C,S] = subclust(X,radii,xBounds,options)

Description [C,S] = subclust(X,radii,xBounds,options) estimates the cluster
centers in a set of data by using the subtractive clustering method.

The function returns the cluster centers in the matrix C. Each row of C
contains the position of a cluster center. The returned S vector contains
the sigma values that specify the range of influence of a cluster center
in each of the data dimensions. All cluster centers share the same set
of sigma values.

The subtractive clustering method assumes each data point is a
potential cluster center and calculates a measure of the likelihood that
each data point would define the cluster center, based on the density of
surrounding data points. The algorithm does the following:

• Selects the data point with the highest potential to be the first
cluster center

• Removes all data points in the vicinity of the first cluster center (as
determined by radii), in order to determine the next data cluster
and its center location

• Iterates on this process until all of the data is within radii of a
cluster center

The subtractive clustering method is an extension of the mountain
clustering method proposed by R. Yager.

The matrix X contains the data to be clustered; each row of X is a
data point. The variable radii is a vector of entries between 0 and 1
that specifies a cluster center’s range of influence in each of the data
dimensions, assuming the data falls within a unit hyperbox. Small
radii values generally result in finding a few large clusters. The best
values for radii are usually between 0.2 and 0.5.

For example, if the data dimension is two (X has two columns),
radii=[0.5 0.25] specifies that the range of influence in the first data
dimension is half the width of the data space and the range of influence

3-84



subclust

in the second data dimension is one quarter the width of the data
space. If radii is a scalar, then the scalar value is applied to all data
dimensions, i.e., each cluster center has a spherical neighborhood of
influence with the given radius.

xBounds is a 2-by-N matrix that specifies how to map the data in X
into a unit hyperbox, where N is the data dimension. This argument is
optional if X is already normalized. The first row contains the minimum
axis range values and the second row contains the maximum axis range
values for scaling the data in each dimension.

For example, xBounds = [-10 -5; 10 5] specifies that data values in the
first data dimension are to be scaled from the range [-10 +10] into
values in the range [0 1]; data values in the second data dimension are
to be scaled from the range [-5 +5] into values in the range [0 1]. If
xBounds is an empty matrix or not provided, then xBounds defaults to
the minimum and maximum data values found in each data dimension.

The options vector can be used for specifying clustering algorithm
parameters to override the default values. These components of the
vector options are specified as follows:

• options(1) = quashFactor: This factor is used to multiply the radii
values that determine the neighborhood of a cluster center, so as to
quash the potential for outlying points to be considered as part of
that cluster. (default: 1.25)

• options(2) = acceptRatio: This factor sets the potential, as
a fraction of the potential of the first cluster center, above which
another data point is accepted as a cluster center. (default: 0.5)

• options(3) = rejectRatio: This factor sets the potential, as a
fraction of the potential of the first cluster center, below which a data
point is rejected as a cluster center. (default: 0.15)

• options(4) = verbose: If this term is not zero, then progress
information is printed as the clustering process proceeds. (default: 0)

Examples [C,S] = subclust(X,0.5)

3-85



subclust

This command sets the minimum number of arguments needed to use
this function. A range of influence of 0.5 has been specified for all data
dimensions.

[C,S] = subclust(X,[0.5 0.25 0.3],[],[2.0 0.8 0.7])

This command assumes the data dimension is 3 (X has 3 columns) and
uses a range of influence of 0.5, 0.25, and 0.3 for the first, second, and
third data dimension, respectively. The scaling factors for mapping
the data into a unit hyperbox are obtained from the minimum and
maximum data values. The squashFactor is set to 2.0, indicating
that you only want to find clusters that are far from each other. The
acceptRatio is set to 0.8, indicating that only data points that have
a very strong potential for being cluster centers are accepted. The
rejectRatio is set to 0.7, indicating that you want to reject all data
points without a strong potential.

References Chiu, S., "Fuzzy Model Identification Based on Cluster Estimation,"
Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

Yager, R. and D. Filev, "Generation of Fuzzy Rules by Mountain
Clustering," Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp.
209-219, 1994.

See Also genfis2

3-86



surfview

Purpose Open Surface Viewer

Syntax surfview('a')

Description

The Surface Viewer, invoked using surfview('a'), is a GUI tool that
lets you examine the output surface of a FIS stored in a file, a.fis, for
any one or two inputs. Because it does not alter the fuzzy system or its
associated FIS structure in any way, Surface Viewer is a read-only
editor. Using the drop-down menus, you select the two input variables
you want assigned to the two input axes (X and Y), as well the output
variable you want assigned to the output (or Z) axis.

3-87



surfview

If you want to create a smoother plot, use the Plot points field to specify
the number of points on which the membership functions are evaluated
in the input or output range. This field defaults to a value of 101.

Click Evaluate to perform the calculation and plot the output surface.

By clicking on the plot axes and dragging the mouse, you can
manipulate the surface so that you can view it from different angles.

If there are more than two inputs to your system, you must supply the
constant values associated with any unspecified inputs in the reference
input section.

Refer to “The Surface Viewer” on page 2-59 for more information about
how to use surfview.

Menu
Items

On the Surface Viewer, there is a menu bar that allows you to open
related GUI tools, open and save systems, and so on. The Surface
Viewer uses the same File menu as the one on the FIS Editor. Refer to
fuzzy for more information:

• Use the Edit menu items:

Undo to undo the most recent action

FIS properties to invoke the FIS Editor

Membership functions to invoke the Membership Function Editor

Rules... to invoke the Rule Editor

• Use the View menu item:

Rules to invoke the Rule Viewer

• Use the Options menu items:

Plot to choose among eight different kinds of plot styles.

Color Map to choose among several different color schemes.

Always evaluate to automatically evaluate and plot a new surface
every time you make a change that affects the plot, such as changing

3-88



surfview

the number of grid points. This option is selected by default. To clear
this option, select it once more.

See Also anfisedit | fuzzy | gensurf | mfedit | ruleedit | ruleview

3-89



trapmf

Purpose Trapezoidal-shaped membership function

Syntax y = trapmf(x,[a b c d])

Description The trapezoidal curve is a function of a vector, x, and depends on four
scalar parameters a, b, c, and d, as given by

f x a b c d

x a
x a
b a

a x b

b x c
d x
d c

c x d

d x

; , , ,

,

,

,

,

,

( ) =

≤
−
−

≤ ≤

≤ ≤
−
−

≤ ≤

≤

⎧

⎨

⎪
⎪

0

1

0

⎪⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

or, more compactly, by

f x a b c d
x a
b a

d x
d c

o; , , , max min , , ,( ) = −
−

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟1

The parameters a and d locate the “feet” of the trapezoid and the
parameters b and c locate the “shoulders.”

Examples x=0:0.1:10;
y=trapmf(x,[1 5 7 8]);
plot(x,y)
xlabel('trapmf, P=[1 5 7 8]')

3-90



trapmf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

trapmf, P = [1 5 7 8]

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trimf | zmf

3-91



trimf

Purpose Triangular-shaped membership function

Syntax y = trimf(x,params)

y = trimf(x,[a b c])

Description The triangular curve is a function of a vector, x, and depends on three
scalar parameters a, b, and c, as given by

f x a b c

x a
x a
b a

a x b

c x
c b

b x c

c x

; , ,

,

,

,

,

( ) =

≤
−
−

≤ ≤

−
−

≤ ≤

≤

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪

0

0

⎪⎪

⎭

⎪
⎪
⎪

or, more compactly, by

f x a b c
x a
b a

c x
c b

o; , , max min , ,( ) = −
−

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

The parameters a and c locate the “feet” of the triangle and the
parameter b locates the peak.

Examples x=0:0.1:10;
y=trimf(x,[3 6 8]);
plot(x,y)
xlabel('trimf, P=[3 6 8]')

3-92



trimf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

trimf, P = [3 6 8]

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trapmf

3-93



writefis

Purpose Save Fuzzy Inference System to file

Syntax writefis(fismat)

writefis(fismat,'filename')

writefis(fismat,'filename','dialog')

Description writefis saves a MATLAB workspace FIS structure, fismat, as a .fis
file.

writefis(fismat) opens a dialog box to assist with the naming and
folder location of the file.

writefis(fismat,'filename') writes a .fis file corresponding to the
FIS structure, fismat, to a file called filename.fis. No dialog box
appears, and the file is saved to the current folder.

writefis(fismat,'filename', 'dialog') opens a dialog box with the
default name filename.fis supplied.

The extension .fis is only added to filename if it is not already
included in the name.

Examples a = newfis('tipper');
a = addvar(a,'input','service',[0 10]);
a = addmf(a,'input',1,'poor','gaussmf',[1.5 0]);
a = addmf(a,'input',1,'good','gaussmf',[1.5 5]);
a = addmf(a,'input',1,'excellent','gaussmf',[1.5 10]);
writefis(a,'my_file')

See Also readfis

3-94



zmf

Purpose Z-shaped membership function

Syntax y = zmf(x,[a b])

Description This spline-based function of x is so named because of its Z-shape. The
parameters a and b locate the extremes of the sloped portion of the
curve as given by.

f x a b

x a

x a
b a

a x
a b

x b
b a

a b
; ,

,

,

-
,

( ) =

≤

− −
−

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ +

−⎛
⎝⎜

⎞
⎠⎟

+

1

1 2
2

2

2

2
2

≤≤ ≤

≥

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

x b

x b0,

Examples x=0:0.1:10;
y=zmf(x,[3 7]);
plot(x,y)
xlabel('zmf, P=[3 7]')

0 2 4 6 8 10

0

0.25

0.5

0.75

1

zmf, P = [3 7]

3-95



zmf

See Also dsigmf | gaussmf | gauss2mf | gbellmf | evalmf | mf2mf | pimf |
psigmf | sigmf | smf | trapmf | trimf

3-96



4

Blocks — Alphabetical List



Diff. Sigmoidal MF

Purpose Difference of two sigmoids membership function in Simulink software

Description The Diff. Sigmoidal MF block implements a membership function in
Simulink based on the difference between two sigmoids. The two
sigmoid curves are given by

f x
a x ck

k k
( )

exp( ( ))
=

+ − −
1

1

where k=1,2. The parameters a1and a2 control the slopes of the left and
right curves. The parameters c1 and c2 control the points of inflection for
the left and right curves. The parameters a1 and a2 should be positive.

See Also dsigmf

4-2



Fuzzy Logic Controller

Purpose Fuzzy inference system in Simulink software

Description The Fuzzy Logic Controller block implements a fuzzy inference system
(FIS) in Simulink. See “Simulate Fuzzy Inference Systems in Simulink”
on page 2-90 for a discussion of how to use this block.

Dialog
Box

FIS File or Structure
Specify your fuzzy inference system as a fis file or structure.

See Also Fuzzy Logic Controller with Ruleviewer

4-3



Fuzzy Logic Controller with Ruleviewer

Purpose Fuzzy inference system with Ruleviewer in Simulink software

Description

The Fuzzy Logic Controller with Ruleviewer block implements a fuzzy
inference system (FIS) with the Rule Viewer in Simulink. See “Simulate
Fuzzy Inference Systems in Simulink” on page 2-90 for a discussion of
how to use this block.

Dialog
Box

FIS matrix
Specify your fuzzy inference system as a fis file or structure.

Refresh rate (sec)
Specify the refresh rate in seconds.

4-4



Fuzzy Logic Controller with Ruleviewer

See Also Fuzzy Logic Controller

4-5



Gaussian MF

Purpose Gaussian membership function in Simulink software

Description The Gaussian MF block implements a membership function in Simulink
based on a symmetric Gaussian. The Gaussian curve is given by

f x
x c( ) =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟exp

- . ( - )0 5 2

2σ
 

where c is the mean and σ is the variance.

See Also gaussmf

4-6



Gaussian2 MF

Purpose Combination of two Gaussian membership functions in Simulink
software

Description The Gaussian2 MF block implements a membership function based on
a combination of two Gaussian functions. The two Gaussian functions
are given by

 f x
x c

k
k

k
( ) =

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟exp

. ( - )0 5 2

2σ

where k=1,2. The parameters c1 and σ1 are the mean and variance
defining the left-most curve. The parameters c2 and σ2 are the mean
and variance defining the right-most curve.

See Also gauss2mf

4-7



Generalized Bell MF

Purpose Generalized bell membership function in Simulink software

Description The Generalized Bell MF block implements a membership function in
Simulink based on a generalized bell-shaped curve. The generalized
bell-shaped curve is given by

f x
x c
a

b( ) =

+

1

1
2-

where the parameters a and b vary the width of the curve and the
parameter c locates the center of the curve. The parameter b should
be positive.

See Also gbellmf

4-8



Pi-shaped MF

Purpose Pi-shaped membership function in Simulink software

Description The Pi-shaped MF block implements a membership function in
Simulink based on a spline-based curve, so named because of its Π
shape. The parameters a and d locate the left and right base points or
“feet” of the curve. The parameters b and c set the left and right top
point or “shoulders” of the curve.

See Also pimf

4-9



Probabilistic OR

Purpose Probabilistic OR function in Simulink software

Description The Probabilistic OR block outputs the probabilistic OR value for the
vector signal input, based on

y x= ( )1 1- prod -

See Also probor, Probabilistic Rule Agg

4-10



Probabilistic Rule Agg

Purpose Probabilistic OR function, rule aggregation method

Description The Probabilistic Rule Agg block outputs the element-wise(.*)
probabilistic OR value of the two inputs based on

y a b= [ ]( )1 1- prod - ;

The two inputs, a and b, are row vectors.

See Also probor, Probabilistic OR

4-11



Prod. Sigmoidal MF

Purpose Product of two sigmoid membership functions in Simulink software

Description The Prod. Sigmoidal MF block implements a membership function
based on the product of two sigmoidal curves. The two sigmoidal curves
are given by

f x
a x ck

k k
( ) =

+ − ( )( )
1

1 exp -

where k=1,2 The parameters a1 and a2 control the slopes of the left and
right curves. The parameters c1 and c2 control the points of inflection
for the left and right curves. Parameters a1 and a2 should be positive
and negative respectively.

See Also psigmf

4-12



S-shaped MF

Purpose S-shaped membership function in Simulink software

Description The S-shaped MF block implements an S-shaped membership function
in Simulink. Going from left to right the function increases from 0 to
1. The parameters a and b locate the left and right extremes of the
sloped portion of the curve.

See Also smf

4-13



Sigmoidal MF

Purpose Sigmoidal membership function in Simulink software

Description The Sigmoidal MF block implements a sigmoidal membership function
given by

f x
a x c

( ) =
+

1
1 exp(- ( - ))

When the sign of a is positive the curve increases from left to right.
Conversely, when the sign of a is negative the curve decreases from left
to right. The parameter c sets the point of inflection of the curve.

See Also sigmf

4-14



Trapezoidal MF

Purpose Trapezoidal membership function in Simulink software

Description The Trapezoidal MF block implements a trapezoidal-shaped
membership function. The parameters a and d set the left and right
“feet,” or base points, of the trapezoid. The parameters b and c set the
“shoulders,” or top of the trapezoid.

See Also trapmf

4-15



Triangular MF

Purpose Triangular membership function in Simulink software

Description The Triangular MF block implements a triangular-shaped membership
function. The parameters a and c set the left and right “feet,” or base
points, of the triangle. The parameter b sets the location of the triangle
peak.

See Also trimf

4-16



Z-shaped MF

Purpose Z-shaped membership function in Simulink software

Description The Z-shaped MF block implements a Z-shaped membership function.
Going from left to right the function decreases from 1 to 0. The
parameters a and b locate the left and right extremes of the sloped
portion of the curve.

See Also trimf, zmf

4-17



Z-shaped MF

4-18



A

Bibliography



A Bibliography

[1] Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[2] Chiu, S., “Fuzzy Model Identification Based on Cluster Estimation,”
Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, Spet. 1994.

[3] Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New York, 1980.

[4] Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm,” Proc. of the Ninth National Conf. on Artificial
Intelligence (AAAI-91), pp. 762-767, July 1991.

[5] Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23,
No. 3, pp. 665-685, May 1993.

[6] Jang, J.-S. R. and N. Gulley, “Gain scheduling based fuzzy controller
design,” Proc. of the International Joint Conference of the North American
Fuzzy Information Processing Society Biannual Conference, the Industrial
Fuzzy Control and Intelligent Systems Conference, and the NASA Joint
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio,
Texas, Dec. 1994.

[7] Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,
Proceedings of the IEEE, March 1995.

[8] Jang, J.-S. R. and C.-T. Sun, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice
Hall, 1997.

[9] Kaufmann, A. and M.M. Gupta, Introduction to Fuzzy Arithmetic, V.N.
Reinhold, 1985.

[10] Lee, C.-C., “Fuzzy logic in control systems: fuzzy logic controller-parts 1
and 2,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No.
2, pp 404-435, 1990.

A-2



Bibliography

[11] Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis
with a fuzzy logic controller," International Journal of Man-Machine Studies,
Vol. 7, No. 1, pp. 1-13, 1975.

[12] Mamdani, E.H., “Advances in the linguistic synthesis of fuzzy
controllers,” International Journal of Man-Machine Studies, Vol. 8, pp.
669-678, 1976.

[13] Mamdani, E.H., “Applications of fuzzy logic to approximate reasoning
using linguistic synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12,
pp. 1182-1191, 1977.

[14] Schweizer, B. and A. Sklar, “Associative functions and abstract
semi-groups,” Publ. Math Debrecen, 10:69-81, 1963.

[15] Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M.
Gupta, G. N. Saridis, and B.R. Gaines, editors) Fuzzy Automata and Decision
Processes, pp. 89-102, North-Holland, NY, 1977.

[16] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science
Pub. Co., 1985.

[17] Wang, L.-X., Adaptive fuzzy systems and control: design and stability
analysis, Prentice Hall, 1994.

[18] Widrow, B. and D. Stearns, Adaptive Signal Processing, Prentice Hall,
1985.

[19] Yager, R., “On a general class of fuzzy connectives,” Fuzzy Sets and
Systems, 4:235-242, 1980.

[20] Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain
Clustering,” Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp.
209-219, 1994.

[21] Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353,
1965.

A-3



A Bibliography

[22] Zadeh, L.A., “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

[23] Zadeh, L.A., “The concept of a linguistic variable and its application
to approximate reasoning, Parts 1, 2, and 3,” Information Sciences, 1975,
8:199-249, 8:301-357, 9:43-80.

[24] Zadeh, L.A., “Fuzzy Logic,” Computer, Vol. 1, No. 4, pp. 83-93, 1988.

[25] Zadeh, L.A., “Knowledge representation in fuzzy logic,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, pp. 89-100, 1989.

A-4



Glossary

Glossary

Adaptive Neuro-Fuzzy Inference System
(ANFIS) A technique for automatically tuning Sugeno-type inference
systems based on training data.

aggregation
The combination of the consequents of each rule in a Mamdani fuzzy
inference system in preparation for defuzzification.

antecedent
The initial (or “if”) part of a fuzzy rule.

consequent
The final (or “then”) part of a fuzzy rule.

defuzzification
The process of transforming a fuzzy output of a fuzzy inference system
into a crisp output.

degree of fulfillment
See firing strength

degree of membership
The output of a membership function, this value is always limited to
between 0 and 1. Also known as a membership value or membership
grade.

firing strength
The degree to which the antecedent part of a fuzzy rule is satisfied.
The firing strength may be the result of an AND or an OR operation,
and it shapes the output function for the rule. Also known as degree of
fulfillment.

fuzzification
The process of generating membership values for a fuzzy variable using
membership functions.

Glossary-1



Glossary

fuzzy c-means clustering
A data clustering technique wherein each data point belongs to a cluster
to a degree specified by a membership grade.

fuzzy inference system (FIS)
The overall name for a system that uses fuzzy reasoning to map an
input space to an output space.

fuzzy operators
AND, OR, and NOT operators. These are also known as logical
connectives.

fuzzy set
A set that can contain elements with only a partial degree of
membership.

fuzzy singleton
A fuzzy set with a membership function that is unity at a one particular
point and zero everywhere else.

implication
The process of shaping the fuzzy set in the consequent based on the
results of the antecedent in a Mamdani-type FIS.

Mamdani-type inference
A type of fuzzy inference in which the fuzzy sets from the consequent
of each rule are combined through the aggregation operator and the
resulting fuzzy set is defuzzified to yield the output of the system.

membership function (MF)
A function that specifies the degree to which a given input belongs to a
set or is related to a concept.

singleton output function
An output function that is given by a spike at a single number rather
than a continuous curve. In the Fuzzy Logic Toolbox software, it is only
supported as part of a zero-order Sugeno model.

Glossary-2



Glossary

subtractive clustering
A technique for automatically generating fuzzy inference systems by
detecting clusters in input-output training data.

Sugeno-type inference
A type of fuzzy inference in which the consequent of each rule is a linear
combination of the inputs. The output is a weighted linear combination
of the consequents.

T-conorm
A two-input function that describes a superset of fuzzy union (OR)
operators, including maximum, algebraic sum, and any of several
parameterized T-conorms Also known as S-norm.

T-norm
A two-input function that describes a superset of fuzzy intersection
(AND) operators, including minimum, algebraic product, and any of
several parameterized T-norms.

Glossary-3



Glossary

Glossary-4



Index

IndexA
addmf 2-84
addrule 2-85
addvar 2-88
aggregation 2-21 2-34
AND 2-14
anfis 2-110

options 2-147
anfisedit 2-79
antecedent 2-18

B
backpropagation 2-125

C
chaotic time series 2-152
checking data 2-112
checking error 2-151
clustering 2-152
clustering algorithms Glossary-3
clustering GUI 2-171
consequent 2-15
convertfis 3-12
custom function 2-62
customization 2-62

D
defuzz 3-13
defuzzification 2-16
defuzzify 2-28
degree of membership 2-3
distfcm 2-155
dsigmf 2-10

E
error tolerance 2-125
evalfis 2-85

evalmf 3-17

F
fcm (fuzzy c-means) 2-152
findcluster 2-171
FIS 2-33

C-code 2-174
Editor 2-36
files 2-88
generating 2-121
Mamdani-type 2-40
matrix 2-86
saving a FIS 2-61
structure 2-111

fuzblock 2-97
fuzzification 2-16
fuzzy 3-24
fuzzy c-means clustering 3-18
fuzzy clustering 2-147
fuzzy inference engine 2-174
fuzzy inference system in Simulink 4-3
fuzzy inference system with Ruleviewer in

Simulink 4-4
fuzzy operators 2-12
fuzzy set 2-3

G
gauss2mf 2-10
gaussian 2-10
gaussmf 2-10
gbellmf 2-10
genfis 2-134
genfis1 2-123
genfis2 2-123
gensurf 2-81
getfis 2-77
grid partition 2-122

Index-1



Index

H
hybrid method 2-125

I
if-then rules 2-16

antecedent 2-15
implication 2-16

implication 2-16
See also if-then rules

initfcm 2-155

L
logical operations 2-12

M
mam2sug 3-50
Mamdani-style inference Glossary-2
Mamdani-type inference 2-18
max 2-27
membership function 2-6

mf editor 2-124
Membership Function Editor 2-36
membership functions

bell 2-10
custom 2-64
Gaussian 2-10
Pi 2-11
S 2-11
sigmoidal 2-10
Z 2-11

MF. See membership function
mf2mf 3-51
mfedit 3-53
min 2-31
model validation 2-112

N
neuro-fuzzy inference 2-111
newfis 2-84
NOT 2-14

O
OR 2-14

P
pimf 2-11
plotfis 2-79
plotmf 2-79
probabilistic OR 2-25
probor 2-27
psigmf 2-10

R
readfis 2-76
rmmf 2-88
rmvar 2-88
Rule Editor 2-36
Rule Viewer 2-36
ruleedit 3-70
ruleview 3-72

S
setfis 2-78
showfis 2-78
showrule 3-79
sigmf 2-10
Simulink blocks

fuzzy controller with ruleviewer 2-94
Fuzzy Logic Controller 2-90

Simulink, working with 2-90
singleton 2-21
sltank 2-90
smf 2-11

Index-2



Index

stand-alone C code 2-174
stand-alone fuzzy inference engine 2-174
step size 2-149
structure.field syntax 2-77
subclust 3-84
subtractive clustering 2-158
Sugeno 2-159
Sugeno-type FIS 2-122

See also Sugeno-type inference
Sugeno-type inference 2-21
sum 2-27
Surface Viewer 2-36
surfview 3-87

T
T-conorm 2-15
T-norm 2-14
testing data 2-112
training data 2-112

training error 2-149
trapezoidal 2-9
trapmf 2-9
trimf 3-92

U
UNIX

stand-alone fuzzy inference engine 2-179

W
Windows

stand-alone fuzzy inference engine 2-175
writefis 3-94

Z
zmf 2-11

Index-3


	toc
	Getting Started
	Product Description
	Key Features

	Installation
	Using This Guide
	What Is Fuzzy Logic?
	Description of Fuzzy Logic
	Why Use Fuzzy Logic?
	When Not to Use Fuzzy Logic
	What Can Fuzzy Logic Toolbox Software Do?

	Fuzzy vs. Nonfuzzy Logic
	The Basic Tipping Problem
	The Nonfuzzy Approach
	The Fuzzy Logic Approach
	Problem Solution
	Observations
	Recalibrating the Method



	Tutorial
	Foundations of Fuzzy Logic
	Overview
	Fuzzy Sets
	Membership Functions
	Membership Functions in Fuzzy Logic Toolbox Software
	Summary of Membership Functions

	Logical Operations
	Additional Fuzzy Operators

	If-Then Rules
	Summary of If-Then Rules

	References

	Types of Fuzzy Inference Systems
	Fuzzy Inference Process
	Step 1. Fuzzify Inputs
	Step 2. Apply Fuzzy Operator
	Step 3. Apply Implication Method
	Step 4. Aggregate All Outputs
	Step 5. Defuzzify
	Fuzzy Inference Diagram

	Customization
	What Is Mamdani-Type Fuzzy Inference?
	Build Mamdani Systems (GUI)
	How to Build Mamdani Systems Using Fuzzy Logic Toolbox Graphical
	The Basic Tipping Problem
	The FIS Editor
	The Membership Function Editor
	The Rule Editor
	The Rule Viewer
	The Surface Viewer
	Importing and Exporting from the GUI Tools

	Build Mamdani Systems Using Custom Functions
	How to Build Fuzzy Inference Systems Using Custom Functions in t
	Specifying Custom Membership Functions
	Specifying Custom Inference Functions
	Guidelines for Creating Custom AND and OR Functions
	Guidelines for Creating Custom Implication Functions
	Guidelines for Creating Custom Aggregation Functions
	Guidelines for Creating Custom Defuzzification Functions
	Steps for Specifying Custom Inference Functions


	Build Mamdani Systems (Code)
	Tipping Problem from the Command Line
	System Display Functions
	Building a System from Scratch
	Specifying Custom Membership and Inference Functions

	FIS Evaluation
	The FIS Structure
	Saving FIS Files


	Simulate Fuzzy Inference Systems in Simulink
	Build Your Own Fuzzy Simulink Models
	About the Fuzzy Logic Controller Block
	About the Fuzzy Logic Controller with Ruleviewer Block
	Initializing Fuzzy Logic Controller Blocks
	Example: Cart and Pole Simulation

	What Is Sugeno-Type Fuzzy Inference?
	Comparison of Sugeno and Mamdani Systems
	Advantages of the Sugeno Method
	Advantages of the Mamdani Method

	anfis and the ANFIS Editor GUI
	When to Use Neuro-Adaptive Learning
	Model Learning and Inference Through ANFIS
	What Is ANFIS?
	FIS Structure and Parameter Adjustment
	Know Your Data
	References

	Train Adaptive Neuro-Fuzzy Inference Systems (GUI)
	Loading, Plotting, and Clearing the Data
	Generating or Loading the Initial FIS Structure
	Training the FIS
	Validating the Trained FIS

	Test Data Against Trained System (GUI)
	Checking Data Helps Model Validation
	Checking Data Does Not Validate Model

	Predict Chaotic Time-Series (Code)
	Using anfis for Chaotic Time-Series Prediction

	Save Training Error Data to MATLAB Workspace
	Comparison of anfis and ANFIS Editor Functionality
	Training Data
	Input FIS Structure
	Training Options
	Display Options
	Method
	Output FIS Structure for Training Data
	Training Error
	Step-Size
	Checking Data
	Output FIS Structure for Checking Data
	Checking Error


	Fuzzy Clustering
	What Is Data Clustering?
	References

	Fuzzy C-Means Clustering
	Cluster Quasi-Random Data Using Fuzzy C-Means Clustering
	Subtractive Clustering
	Model Suburban Commuting Using Subtractive Clustering
	Overfitting

	Data Clustering Using the Clustering Tool
	Loading and Plotting the Data
	Starting the Clustering
	Saving the Cluster Center


	Simulating Fuzzy Inference Systems Using the Fuzzy Inference Eng
	About the Fuzzy Inference Engine
	Simulate Systems on Windows Platforms
	Including the lcc Command in the PATH Environment Variable
	Including the lcclnk Command in the PATH Environment Variable

	Simulate Systems on UNIX Platforms


	Functions — Alphabetical List
	Blocks — Alphabetical List
	Bibliography
	Glossary
	Index


